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FOREWORD

MAPSEP (Mission Analysis Program for Solar Electric Propulsion)

is a computer program developed by Martin Marietta Aerospace, Denver

Division, for the NASA Marshall Space Flight Center under Contract

NAS8-29666. MAPSEP contains the basic modes: TOPSEP (trajectory

generation), GODSEP (linear error analysis) and SIMSEP (simulation).

These modes and their various options give the user sufficient flexi-

bility to analyze any low thrust mission with respect to trajectory

performance, guidance and navigation, and to provide meaningful sys-

tem related requirements for the purpose of vehicle design.

This volume is the first of three and contains the analytical or

functional description of MAPSEP. Subsequent volumes relate to opera-

tional usage and to program logical flow.
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1. INTRODUCTION

A major requirement for spacecraft systems design is the effec-

tive analysis of performance errors and their impact on mission success.

This requirement is especially necessary for low thrust missions where

thrust errors dominate all spacecraft error sources. Fast, accurate para-

metric error analyses can only be performed by a computer program which

is efficiently constructed, easy to use, flexible, and contains model-

ing of all pertinent spacecraft and environmental processes. MAPSEP

(Mission Analysis Program for Solar Electric Propulsion) is designed

to meet these characteristics. It is intended to provide rapid evalu-

ation of guidance, navigation and performance requirements to the

degree necessary for spacecraft and mission design.

The baseline design of MAPSEP was taken from a previous study

effort (Reference 1). Suitable modifications to the design were made

which reflected subsequent operational experience (References 2 and 3)

and actual construction and testing of MAPSEP. Considerable knowledge

was also gained in the construction and usage of the engineering ver-

sion of MAPSEP which was actually three separate programs that corre-

sponded to the modes (Figure 1-1): TOPSEP, GODSEP and SIMSEP. Driving

considerations in the program design and construction were: realistic

vehicle and environment modeling consistent with preliminary vehicle

design, flexibility in usage, computational speed and accuracy, mini-

mum core utilization (for turnaround time and operating costs) and

maximum growth potential through modularity.
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This document is the first of three volumes. Contained herein

is a brief introduction to MAPSEP organization and detailed analyti-

cal descriptions of all models and algorithms. These include, for

example, trajectory and error covariance propagation 
methods, orbit

determination processes, thrust modeling and trajectory correction

(guidance) schemes. This analytic background is necessary to fully

understand program operation and to maximize program capability with

respect to the user.

The second volume is a description of program usage, that is,

input, output, recommended operating procedures and sample 
cases.

The third volume is a detailed description of internal MAPSEP struc-

ture including macrologic, variable definition, subroutines and logi-

cal flow.

The Analytic, User's and Program Manuals represent a version

distinct from the baseline interplanetary program. The baseline

MAPSEP, delivered to NASA/MSFC in October, 1974, emphasized inter-

planetary low thrust missions with limited Earth orbital capability.

The current MAPSEP version, as reflected by the following documentation,

concentrates specifically on the use of low thrust primary propulsion

for Earth orbital applications.

Many features of the interplanetary version were removed or made

inoperable because of Earth orbital requirements. Some computational

inefficiency still exists because of the limited contract scope. In

any case, Earth orbital MAPSEP contains the capability of analyzing
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almost any currently projected low thrust mission from low Earth

orbit to "super" synchronous altitudes. Furthermore, MAPSEP is

sufficiently flexible to incorporate extended dynamic models,

alternate mission strategies, and almost any other system require-

ment imposed by the user.

As in the interplanetary version, Earth orbital MAPSEP

represents a trade-off between precision modeling and computational

speed consistent with defining necessary system requirements. It

can be used in feasibility studies as well as in flight operational

support. Pertinent operational constraints are available both

implicitly and explicitly. However, the reader should be warned

that because of program complexity, MAPSEP is only as good as the

user and will quickly succumb to faulty user inputs, sometimes

in an obvious fashion, and sometimes in a very subtle manner.



2. PROGRAM DESCRIPTION

This section summarizes MAPSEP's function and use, and MAPSEP

structure. These areas are discussed in greater detail in the user's

manual and programmer's manual, respectively.

As mentioned earlier, MAPSEP is composed of three primary modes.

Each mode is intended to serve a given function in the mission design

sequence. TOPSEP (Targeting and Optimization for SEP) is used to

generate numerically integrated trajectories consistent with dynamic

and system constraints. Performance data and related sensitivities

are computed in the process of trajectory generation but can also be

obtained by parametric application of TOPSEP. Indeed, each mode

readily lends itself to parametric use which is a necessary feature

for mission and system design studies.

GODSEP (Guidance and Orbit Determination for SEP) is used to

perform a linear covariance analysis about a selected reference tra-

jectory, generated by TOPSEP. Various dynamic and measurement related

error sources are applied in a statistical sense to compute trajectory

error covariances. These covariances, corresponding to estimation un-

certainty (knowledge) and to actual trajectory deviations from the

nominal (control), are propagated through a sequence of mission events:

thruster switching, navigation measurement/state update, trajectory

correction (guidance), etc. Thus, GODSEP computes a time history of

the ensemble of all expected trajectory errors, and in the process

displays such useful system parameters as required thrust control
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authority, predicted terminal miss, additional fuel expenditures for

off-nominal performance, etc.

SIMSEP (Trajectory SIMulation of SEP) is used in the latter

stages of system design. It deterministically simulates the trajec-

tory including the application of discrete dynamic errors. Trajectory

corrections are simulated in an operational sense through a thrust

update design and execution process. Navigation is simulated by

sampling estimation error covariances (generated by GODSEP) prior to

each guidance event. By operating SIMSEP in a Monte Carlo fashion,

any desired number of simulated missions can be obtained, and estimated

singly or collectively in statistical displays.

A fourth "mode", REFSEP (REFerence SEP), is actually an expansion

of TOPSEP to provide a greater amount of trajectory and navigation

related data for a particular reference trajectory.

Each.mode of MAPSEP uses a common trajectory propagation routine,

TRAJ. This guarantees trajectory reproducibility among modes. TRAJ

integrates the equations of motion in Encke form using a fourth order

Runge-Kutta scheme. Covariance propagation and transition matrices

are computed by integrating variational equations simultaneously with

the equations of motion. An option exists in GODSEP which stores a

complete set of trajectory parameters and transition matrices as it

is generated by TRAJ onto a magnetic disc called the STM file so that

subsequent error analyses will not have to regenerate the data. The

information on disc can then be transferred to magnetic tape for per-

manent storage, if desired. A more limited option is available for

TOPSEP and SIMSEP which stores only the initial (input) trajectory

data on disc.
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Input to MAPSEP is primarily through cards using the NAMELIST

feature, with supplementary means depending upon mode and function

(Table 2-1). All modes require the *TRAJ namelist which defines

INPUT OUTPUT

Mode Namelist Formated Tape Punched Tape
Cards (or disc) Cards (or disc)

TOPSEP $TRAJ None STM None STM
$TOPSEP GAIN

$TRAJ States
GODSEP $GODSEP Event STM Covariances STM

$GEVENT Data GAIN Guidance GAIN
SUMARY

$TRAJ None STM Statistics STM
SIMSEP SSIMSEP GAIN

;GUID SUMARY

REFSEP $TRAJ Print STM THRUST STM
Events Array

TABLE 2-1. MAPSEP Input/Output

the nominal trajectory and subsequent mode usage. However, if

recycling or case stacking is performed it is not necessary to in-

put $TRAJ again unless desired. The second namelist required for

each mode corresponds to mode peculiar input and bears the name of

that particular mode. Additional namelist, formated cards, and tape

input are generally optional. Besides the standard printout asso-

ciated with MAPSEP, auxiliary output can be obtained which will

facilitate subsequent runs.



The structure of MAPSEP is organized into three levels of

"overlays" which are designed to minimize total computer storage.

At any given time, only those routines which are in active use are

loaded into the working core of the computer. The main overlay

(Figure 2-1) is always in core and contains the main executive,

MAPSEP, and all utility routines that are common to the three modes.

The primary overlays contain key operating routines of each mode,

that is, those routines which are always needed when that particular

mode is in use. Also included as a primary overlay is the data

initialization routine, DATAM, where $TRAJ namelist is read, trajec-

tory and preliminary mode parameters are initialized, and appropriate

parameters are printed out.

The secondary overlays contain routines which perform various

computations during a particular operational sequence. Included are

data initialization routines, analgous to DATAM, which operate on

mode peculiar input and perform mode initialization. An example of

core usage in the changing overlay structure may be provided by a

standard error.analysis event sequence. Error analysis initializa-

tion is performed by the overlay DATAG. Transition matrices are then

read from the STM file, the state covariance is propagated to a

measurement event, and the overlay MEAS is called, which physically

replaces, or overlays, the same core used previously by DATAG.

Similarly at a guidance event, overlay TRAJ will replace MEAS to

compute target sensitivity matrices and overlay GUID will then
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replace TRAJ to compute guidance corrections. Overlay switching is

performed internally and is transparent to the user.

All of the routines and structure of MAPSEP are constructed to

minimize core storage (thus reducing turn-around time and computer

run cost) yet retain the flexibility needed for broad analysis re-

quirements. Furthermore, routines are built as modular as possible

to reduce the difficulties in future modifications and extensions.
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3. NOMENCLATURE

The following symbols are used throughout the Analytic Manual, and

to a great extent in the User's and Program Manuals. However, deviations

from these symbols may occur in localized discussion if required for pur-

poses of clarity.

SYMBOL DEFINITION

a propulsive acceleration

c propulsive exhaust velocity

Cij cross covariance between i and j parameters

E target error index

F dynamic variation matrix

g performance gradient or thrust transfor-
mation matrix

H observation sensitivity matrix (WRT state)

I identity matrix

K filter gain matrix

m spacecraft mass

P covariance of state deviations or elec-
trical power or projection operator

P effective power at 1 AU

Q dynamic (thrust) noise matrix

r spacecraft position

s solve-for parameters

S target sensitivity matrix WRT control para-
meters

t time



SYMBOL DEFINITION

T event time, or target variables, or
thrust

u dynamic (consider) parameters

uT thrust acceleration proportionality (throttling)

U Control parameters

v spacecraft velocity or measurement para-
meters

w ignore parameters

W weighting matrix

x spacecraft state

r guidance matrix

'1 propulsive efficiency

o transition matrix of dynamic parameters

rA gravitational constant

relative range

standard deviation

t correlation time of thrust noise

transition matrix of augmented state

J(tk+l,tk) state transition matrix from time tk to

k+1

thrust noise

SUBSCRIPT DEFINITION

( )C state control covariance

+l, matrix evaluated over time interval tk

to tk+1

( )k state knowledge covariance
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SUBSCRIPT DEFINITION

( ) planet related parameters

( )solve-for parameters

( )measurement consider parameters

( ) ignore parameters

( )x spacecra-ft .state parameters

MISCELLANEOUS DEFINITION

G&N guidance and navigation

OD orbit determination

PGM Projected Gradient Method

S/C spacecraft

SEP solar electric propulsion

WRT with respect to

E( J expected value operation

( )+ post-event value

( ) pre-event value

( ) time derivative

( ) unit.vector
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4.0 TRAJ

Essential to any program used for performance and navigation

analysis is an accurate, but computationally efficient, 
trajectory

propagation routine. This routine must contain realistic models 
of

the dynamic processes acting on and performed by the spacecraft. In

MAPSEP, the subroutine TRAJ fulfills this role. .TRAJ is designed to be

used by the three modes TOPSEP, GODSEP and SIMSEP, and is capable

of duplicating the same trajectory in all modes.

The trajectory overlay TRAJ propagates low thrust, or ballistic,

trajectories relative to Earth, using Encke's 
formulation of

the equations of motion, from any epoch to a 
termination condition.

TRAJ can optionally propagate the state covariance 
or the state

transition matrix along the trajectory for either 
the basic state

or an augmented state. Two of the most important features incorpo-

rated into TRAJ are the variable integration step 
algorithm and

trajectory repeatibility.

4.1 Equations of Motion

In Encke's formulation, all accelerations other than those due

to the gravity of the Earth are called perturbing accelerations.

Position (r ) and velocity (r c) vectors are computed relative of this

primary body using two body formula. 
The deviation vectors from

the reference conic position and velocity vectors, 6 r and Sr,

respectively, are the direct results of numerically 
integrating the

sum of the perturbing accelerations. The true position and velocity
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vectors are, respectively,

r = r + Sr

r = r + Sr
-U

Since r and r can easily be computed from conic formula (See
--C -C

Appendix 1), the only problem is to compute r and r.

Let 8 r be the acceleration deviation from two body motion, such

that Sr is the sum of all perturbing accelerations, e.g., other

bodies, thrust, etc.
N

c i3 [r+f(1i) r.

c  i=l i

+ a + + a

The first term is the difference between two body and 
perturbed two

body motion. The second term is the sum of the perturbing 
accelera-

tions due to the sun and/or moon. The third term (a) is the accelera-

tion due to thrust. The fourth term (2R) is the acceleration due to

radiation pressure, and the fifth term, the acceleration resulting

from a nonspherical mass distribution in the Earth.

The first term is computed from the following equations (See

Reference 4),

fe(3 + 3 oC + e2)
f(o) = + (l + 3/2

-( = r - 2r) ' r

2
r
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where r is the true s/c position vector relative to the primary body

and I is the gravitational constant of the primary body.

To compute the second term, the heliocentric position vectors,

r., of the perturbing bodies, are computed from mean analytical
-1

orbital elements to obtain

r = r + r - r.

2

f(at 3+30( +0(f(o.) = i 1
l + + 3/2

r. 2 r iei

i i r

where Ep is the heliocentric position vector of the Earth

The acceleration vector due to radiation pressure is

1.024 x 108 A C
aR = r A
-2 r

mr

where 1.024 X 108 - solar flux constant

m - instantaneous mass of the s/c

r - heliocentric position vector of the s/c

A - effective cross sectional area of the s/c

C - coeffient of reflectivity.
r

The option exists in TRAJ, to include or exclude the effects of
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radiation pressure when propagating both planetary and interplanetary

trajectories. Before defining the acceleration due to thrust a, we

will model the power subsystem. There are two power subsystem models

used by TRAJ for low thrust. They are solar electric and nuclear electric.

The power to the thrusters (P) is

-- + + -- + + exp -P (t-t -P solar
PC r 2  r5/2 3 7/2 4 L DL PHK, electricr r r r r electric

p = P if P > P or r ( r . solar
max, max min ' electric

P exp -P L(t-t ) - P. nuclear
electric

P - Power available (at 1 AU for solar, at energization for
o nuclear electric

C. - (Empirical) Constants defining solar array characteristics

r - Heliocentric position magnitude of the S/C

PL - Power decay constant

t - Time from epoch

tDL - Time delay

PHK - Housekeeping power

P - Maximum allowable solar electric power
max

r - Heliocentric distance at which P reaches P
min max

The exponential term in the solar electric expression describes the

degradation of the solar array as a function of time.
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C is a scale factor which represents degradation of the solar
o

cells due to particular bombardment in the Earth's radiation zones.

The radiation field is assumed to be axially symmetric about the

magnetic pole. Power degradation effects are modeled after

Reference 9 where the power loss factor is defined by

00-a o (logl0F )

C = e

where a is a constant and F is the cumulative particular flux
o

(measured in equivalent 1 MEV electrons per square cm). F is eval-

uated by integration of the flux rate,

9
ai fi

1=1
F = al0e

where al, a2,..., al0 are empirically derived constants and the fi's

are functions of vehicle distance, R, in Earth radii, and geomagnetic

latitude, S . This flux model is most effective above a 6000 km altitude.

cos
cosS sin f =os

f f= 7 1/2
1 R 4 R R

=2cosS
cos sin s f =

f2 =  2  f5 =  3 8 R 1/4
2 2 5 3 R

cos $ sin sin3  f coss
3 R 2 6 R 3 R9 /5

R R R/5

For numerical purposes, MAPSEP input and internal TRAJ computations

assume the flux units to be in 1014 MEV electron per square cm.

The thrusters provide the spacecraft with the ability to maneu-

ver. By changing the orientation of the thrust vector and maintain-

ing that orientation for a long enough time, it is possible to steer
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the spacecraft and "shape" the trajectory. The thrust controls are

defined in terms of constant parameters over a given time segment of

the trajectory. Thus the user or mode can specify the following

controls for each segment (up to 40):

1. Thrust policy: Inertial pitch and yaw angles, In and

Out of Plane Angles (orbit plane coordinates), or coast.

2. Segment end time (referenced to launch) of the current

segment.

3. Throttling level, uT.

4. Pitch angle (or In Plane Angle), aO.

5. Coefficient, al.

6. Coefficient, a2. See Page 17
for definition

7. Yaw Angle (or Out of Plane Angle), a3* of a0 , ... , a5

8. Number of operating thrusters.

9. Coefficient, a4

10. Coefficient, a5

The thrust policy is merely thrusting or not thrusting (coasting).

Imposed coast periods result when the S/C passes into the shadow of

the Earth. A complete discussion of the shadow model may be found in

Appendix 9.8. During thrust, the user has an option as to the reference

system for the acceleration vector. The two reference systems are

inertial pitch and yaw Angles, Figure (4-1), and In and Out of Plane

Angles, Figure (4-2).

In addition, there are two types of pitch and yaw control policies

which can be used as a function of the orbital mission type and desired

controllability. Thus, the three available thrust policies are
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8 = pitch = a + a t + a2 sin (E + 1)P 0 1 2

8y = yaw = a 3 + a4 t + a 5 sin (E + 02 )

inertial
OR pitch/yaw

p = pitch = a 0 + al sin (E + a 2 )

9 = yaw = a 3 + a4 sin (E + a )

OR

= in plane = a0 + al t + a 2 sin (E + 1

orbit
plane

= out of plane = a3 + a4 t + a5 sin (E + 0 2 )

where t is the time from the start of the current control phase,

E is the orbital eccentric anomaly, and 1 and 02 are phasing angles.

For near circular orbits, use of the eccentric anomaly can cause

difficulty because of the rapid motion of periapsis. MAPSEP thus

has the option of using an alternate form of the fast variable E.

Instead of the eccentric anomaly, a time dependent anomaly is used

which is measured from the start of the current thrust phase.
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Figure (4-2). In and Out of Plane Angles
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The acceleration due to thrust is

0.002 t P uT

mec

.002 - Conversion factor

- Averaged efficiency of ,the thrusters

P - Power delivered to the thrusters

UT - Throttling level

m - Spacecraft mass

c - Exhaust velocity

The mass is numerically integrated from the equation

- ma
m =

c

The thrust acceleration vector a relative to the spacecraft for

the two reference systems is

a' = a cos 9 cos 0
x y p

a' = a sin 9
y Y

a' = -a cos 9 sin 9
z y p

for the pitch-yaw system and

a'x = a cos 6 cos '

a' = a cos d sin Y

a' = a sinz
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for the In and Out of Plane system. In order to transform a' into a,

which is in heliocentric ecliptic coordinates, we must define the

matrix A such that

a=A a'

where

A = X' Y' Z'j

and Z' = -r/jr

X'= -r x Z/ Ir x Z s

Y' = Z
-s

r is the heliocentric spacecraft position vector and Z is the North-s

ecliptic unit vector for the inertial pitch/yaw System. For the

In/Out of Plane system, A is defined in terms of the position and

velocity vectors relative to the primary body. Let r be the

position vector and v be the velocity vector, then A can be

defined as

A = A A3

where

Al= v/Ivl I

S X I

A3
A r x vl

and

A =A xA-2 :3 -
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Since the trajectory is made up of segments, TRAJ propagates

the trajectory using the appropriate set of controls over the tra-

jectory interval where they are in effect. Updates are automatically

performed at the beginning of each new segment.

The last perturbing acceleration, which is yet to be computed,

is the acceleration resulting from a nonspherical mass distribution

in the Earth. For TRAJ, several simplifying assumptions have been

imposed such that only the effect of the J2 harmonic coefficient

included in the dynamic model. To begin, it is assumed that the

Earth is axially symmetric. With this assumption, the gravitational

potential function can be written as

V (r,e) = I- Jk Pk ( s i n e)

where V(r, 8) is written in terms of spherical coordinates r and e .

Physically, r is the magnitude of the geocentric radius vector, and

9 corresponds to the geocentric latitude measured relative to the

equatorial plane. The coefficients Jk (k = 2, 3, 4, . . . .) are

harmonic coefficients which have been empirically evaluated for the

Earth by satellite observations. Req is the equatorial radius, and

Pk (sin 9 ) is the kt h Legendre polynomial of the first kind. 
The

expression for V(r,6) implicitly assumes that an equatorial

inertial coordinate system is being used. In TRAJ where all dynamical

calculations are performed relative to the ecliptic reference system,

it is necessary to make appropriate coordinate transformations both
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before the evaluation of V (r, 9), and after the desired acceleration

has been computed.

Expanding V(r, G) and neglecting all third and higher order terms,

the gravitational potential becomes

V(r, ) =- -t J e P (sin )
rr 2 r 2

where P 2 (sin ) =  (3 sin2 E- 1). The gravitational acceleration

due to the nonsphericity is computed as a gradient of the potential

function, i.e.,

Sav lV A A
a V(r,G) al r + (o)
-J2 r r a

A A

where r, e and are orthronormal vectors defined in a spherical

coordinate system. Performing the indicated differentiations and

simplifying yields the acceleration acting on a S/C due to the

attraction of an oblate planet as

3 P J2 R eq. -3 M e3 J Re sin o cos e  
A

-4 P 2(sin0) r + 2

r r r

The vector a must be transformed from its spherical coordinate

representation into a Cartesian frame. This is accomplished by thed

operation

a = Aa

where A is given by
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x/r -Y/ /2 -xz/r 1 2 2

A = y/r +x/ x 2 + y -yz/r J2 + Y

z/r 0 x 2  2 / r

Performing the matrix multiplication gives the Cartesian components of

acceleration as

3 J2 R eq x 2
a 3 2 R (5 sin 2 -1)
J2x 2 4 r

r

a3 1 J 2 Req - (5 sin e-1)
aJ2y 2 4 r

2
3 _ _2 R eq2

a I 2  eq z (5 sin 2 -3)
J2z 2 4 r

r

where sin e = z/r. Note that the acceleration components given above

are only the perturbing accelerations without the two-body term.

The final calculation is the rotation of this acceleration vector

from an equatorial to an ecliptic representation,

aj2 (ecliptic) = E aJ2 (equatorial),

where E is the well-known rotation matrix involving the obliquity

of the ecliptic.
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Now that all components of the perturbing acceleration, ,

defined, we can obtain r and 6 _ . To do this, V is numerically

integrated with a generalized 4th Order Runge-Kutta algorithm for 
first

order differential equations (Appendix 2). We can express & as a

set of first order equations

=

Sx can be numerically integrated to give 9x(t) = when

given the following initial conditions:

at t = t, x = and r = r r = r

The propagation of ~r (and Sr ) continues until r is greater

than or equal to some prescribed value grmax, then "rectification"

occurs.

Hence, when gr ;rra x at some time, t,

we reinitialize r = r(t), r = r(t) and x =  ,

and compute a new reference conic orbit. Rectification ensures that

the conic is always "close" to the true state. The propagation

continues until 5 r is again greater than or equal to rmax)

and so on to the end of the trajectory.
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The frequency of rectification can be controlled by user input variable

DRMAX.

The use of constant thrust controls over discrete time intervals

makes the trajectory discontinuous in acceleration at the control

switching boundaries. The integration is thus done piecewise. That

is, the state at the boundary between segments is used as initial

conditions (rectification) for the next segment.

4.2 Trajectory Termination

There are four options for terminating trajectories in TRAJ:

(1) final time, (2) closest approach to a target body, (3) sphere of influ-

ence of the primary body, and (4) a radius relative to the primary

body. Termination at final time is straight forward. For the other

conditions, termination criteria are tested after each integration

step. Once a cutoff condition is sensed, a step-size is computed so

that TRAJ can propagate to an interpolated time. TRAJ takes the three

previous planet relative position magnitudes plus the present relative

position magnitude, and the corresponding trajectory times, and fits

a third order polynominal through the four data points, using Newton's

3rd order divided difference interpolation polynomial (Appendix 3).

The independent variables for sphere of influence and stopping radius

termination are the position magnitudes and the corresponding trajec-

tory times are the dependent variables. Since the radius of the sphere

of influence or the stopping radius is known before hand, the infor-

mation that is needed is the time at these position magnitudes. For
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closest approach, the same information is stored as before, but now

the independent variables are the trajectory times and the position

magnitudes are the dependent variables. Instead of knowing a time

for which the position magnitude is a minimum, a value is computed

corresponding to the minimum of a 3rd order polynomial.

SOI

Planet

sto

S/C Trajectory

Figure (4-3). Radius Stopping Conditions

4.3 Trajectory Accuracy

As with all problems that require numerical integration, some

criteria must be used in determining the nominal integration stepsize.

The stepsize algorithm used in TRAJ is empirical, and it meets the



Page 24 has been deleted.
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requirements of reasonable numerical results and computer run time.

The algorithm is

h = E jfl

where h is the integration stepsize, f is the gravity gradient (See

Appendix 4) and 6 is a user input scale factor. There are con-

straints on h such that

h 5 days

for heliocentric trajectories and

h 1 day

for planetary trajectories.

The effects of h on the state transition matrix are small com-

pared to the spacecraft state. Mass and mass variation are also not

strongly affected by h.because they are affected primarily by the

spacecraft heliocentric position. Therefore, a good choice of h

ensures a satisfactory trajectory.

4.4 Traiectory Repeatability

A major goal in building TRAJ was the ability to reproduce the

same trajectory in all modes, given the same initial and spacecraft

related data. To accomplish this, all propagation that resulted in

altering the nominal-integration stepsize was decoupled from the

event stepsize logic. That is, event times and print times do not

alter the norminal stepsize; instead, the information at the previous
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nominal stepsize, t, is saved and a separate stepsize is computed

for the event or print time, t + hE (Figure 4-5). If there are

many events or prints between t and t + h a stepsize hE is computed

for each. Afterward, TRAJ returns to the nominal trajectory and

continues the propagation.. This suggests that, if the trajectory

starts at any nominal integration step .the trajectory will be

duplicated, especially with respect to terminal conditions, for any

run with different print and event times. For trajectories that do

not start at a nominal integration step, there will be slight devi-

ations in.the terminal conditions from the nominal, but they will be

close.

t

R22

- nominal integration time

- event or print time

hE event or print integration step

h nominal integration step

Figure 4-5. Trajectory Preservation
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4.5 State Transition Matrix Generation

In a linear error analysis, the state transition matrix is used

to map perturbations, 6x , about a reference trajectory at one epoch

to perturbations at another epoch. First, the equations of motion

= f , t)

are expanded in a Taylor series around ex,

f + , t) = f(, t)+ x + 0( Sx2)

By neglecting powers of 0(Sx2) and higher, the linearized differential

equations

Ex = F S x (4-1)

are obtained, where

Sx = flx+ x, t)- f, t)

and

F f 0

The term f is a 3 x 3 time varying expression evaluated along the

reference trajectory. The solution to the linear differential equa-

tion 4-1, is of the form
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I
g is the gravitational acceleration contributon from secondary

bodies, and aT is the thrust caused acceleration term discussed in

Section 4.1. 9 is a term of miscellaneous accelerations due to

planetary oblateness, radiation pressure, etc. Since many of these

accelerations have low order effects for Earth orbital missions,

MAPSEP includes them according to user option via input.control

flags (See User's Manual.) It should be noted that all terms

depend on the S/C position vector and this dependence must be

taken into account when the variational partials are computed.

To derive the variational equations, the vector function, f, is

expanded in a Taylor series about some reference solution to equation

4-1. Hence, the right hand side of 4-1 becomes

f (x+ x, t) = (i, t) + _ _x+ (s 2)

where 6 x is relative to the reference trajectory state at time t.

By neglecting second and higher order terms, this expression reduces to

1 = F Sx (4-2)

where bc is defined by

x = f (x + x, t) - f (x t)

and F is a matrix of first order partials of the vector function f with

respect to state components. Explicitly writing the F matrix, it is

seen that it has only two non-zero partitions.

F 33 - 33

f33 33 (6x6)L -I"(66
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where 133 is a 3x3 identity matrix and f33 is a 3x3 matrix of time

varying expressions evaluated along the reference trajectory. The

components of f3 3 ' in terms of state variables, are obtained by

analytically differentiating &, &, aT, and ' with respect to r.

The solution of 4-2 is known from the theory of linear dif-

ferential equations to be of the form

S = I SX (4-3)

where is identified as the state transition matrix and is

representable as

= ( x, y,z,vx v , v )

(x ,031 yZ , v , v v )
, Y Z' Vxo Vyo, zo (6x6)

As noted before, x is a perturbation, or deviation, from the

reference trajectory at the initial epoch and, as such, it is arbitrary

but constant. Differenting 4-3 with respect to time and substituting

the resulting expression into 4-2 yields

F (4-4)

This equation is the variational differential equation for the state

transition matrix and is numerically integrated to obtain I over an

arbitrary interval, to to tf, with initial conditions at to being given

by

= I6 6 .
From the more general point of view, equation 4-1 can66

From the more general point of view, equation 4-1 can be
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considered to be dependent on other parameters as well as the usual

state variables. For example, the trajectory generated as a solution

to 4-1 is dependent on thrust controls, gravitational constants of

the Earth and sun, the value of J2 in the potential function, etc.

When some of these parameters are to be investigated in a linear

analysis, the state vector of dynamic variables (x, y, z, x, y and z)

is augmented to include the parameters of interest. This increases

the dimension of the state vector to as great as twelve when there

are three thrust controls, two gravitational constants, and J2 in

addition to the vehicle state.

For the problem where the state vector is augmented with para-

meters, the equations of motion are more suitably written as

A =A ( i , .u J2 , p, Ms ; t) (4-5)

where x A is the augmented state vector, i.e.,

x

,LA
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In the above expression, x corresponds, as before, to the S/C state

vector; u , to the thrust control vector; J2, the harmonic

coefficient, and the / 's refer to gravitational constants.

Following the previous analysis, it is possible to expand 4-5 to obtain

variational equations for the augmented state transition matrix. This

differential equation is of the form

A = FA 1A (4-6)

where 1A is partitioned as

= 8 8 M M
A u J2 p s

036 133 031 031 031

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1 (12x12)

and where FA is given as

S0 66 g 63 Lk 61 d 6i1 m 61

Lo 0136 [0133 L01 3 1  1013 1  [0]31

FA t0 0116 t01 1 3  0 0 0

[0 0116 [0]13 0 0 0

[0 0116 I013 0 0 0 (12x12)
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Explicit definitions for the terms in FA are given in Appendix 4. Terms

appearing in 1A are explicitly defined as follows:

= (partials of state component w.r.t. state components) x 66

8 = (partials of state components w.r.t. thrust controls) 63u U ".

6J2 = (partials of state components w.r.t. J2) = -yJ2
61

M = (partials of state components w.r.t. the Earth's. gravitational
constant)

>P 61

Ms = (partials of state components w.r.t. solar gravitational constant) =

As 61

Before concluding this section, it should be noted that MAPSEP

has program logic which allows arbitrary augmentation of dynamic para-

meters. That is, the program organizes and integrates matrices in

equation 4-6 dimensioned to accommodate only those parameters requested

during input. In this way, there is no time wasted in unnecessary

calculations.
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4.6 Covariance Integration

In any linear error analysis, a major problem is the prop-

agation of state error covariances (P) from one event to the

next event. Two methods are generally used: propagation with

state transition matrices and numerical integration of the

covariance matrix differential equations; both of which are

options in TRAJ. In the latter case, the covariance is inte-

grated to an event, where operations are performed on P, and

the updated P is integrated to the next event.

Given the nonlinear equations of motion

x = x (, u, ~) (4-7)

where x is the spacecraft position and velocity, 1 are constant

spacecraft controls and J are time-varying thrust parameters

(nominally zero), these equations can be linearized about a

reference trajectory such that

6x a++ au + (4-8)
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where Si, ~x, du and Sj are errors in the respective dynamic para-

meters. Both ,u and 6S1)are described in terms of the 3x1 parameter

set: UT, pitch and yaw. The 6x1 actually models two distinct

processes for each parameter set (See also Page 62-A). Whereas Equation

4-7 describes motion of the deterministic reference trajectory, Equation

4-8 describes the linearized propagation of trajectory deviations result-

ing from dynamic and a priori uncertainties. The covariance integrated

by TRAJ not only maps dynamic errors but also measurement related

errors, specifically, uncertainties in three station locations. The

augmented state covariance is defined as

P E [ EA A

Sr

T

&-2

so that P = FP + PF+ Q

where F is similar to that used in the definition of the state transi-

tion matrix, and is evaluated along the reference trajectory, and Q is a

process noise matrix. The augmented F matrix is defined as
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0I 0 0 0 0 0

f 0 g n 0 0 0

0 0 0 0 0 0 0

F= 0 0 0 h 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

where I is a 3 x 3 identity matrix,

n = Zg.g

and h is the matrix of process noise correlation times

-1

-1 0---- 0

-1 --h 0 0

0 0 ---- -1

T6

Analytical equations for terms in the F matrix appear 
in Appendix 4.

The process noise, Q, is modeled as a stationary 
first order Gauss-

Markov process and is defined as
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0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Q = 0 0 0 - 2 .h.E[ 0 cwT] 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

For a discussion of Q, see Chapter 6 (GODSEP).

Propagating P by integrating P is more mathematically

accurate than the use of effective process noise as in the I method,

and it lends itself to greater modeling flexibility for Q. The draw-

back to this method is the increased run time.
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5.0 TRAJECTORY GENERATION - TOPSEP

The targeting and optimization mode, TOPSEP, generates a reference

trajectory which is supplied as basic input to the error analysis and

simulation modes. The primary purpose of TOPSEP is to incorporate in

this trajectory all of the desired flight characteristics for a particular

near-Earth mission while optimizing the final spacecraft mass. Initial

conditions, a thrusting time history, and other control parameters are

found which accomplish this optimization and yet lead to the required

target conditions. The target constraints may be the final spacecraft

state (cartesian or B-plane coordinates), final orbital elements,

periapsis conditions, or other mission specifications which are listed

in Table 5-1 and in the input section of the Users Manual (Volume II, P.18-19)

Performance

Control Parameters Target Parameters Parameter

Initial State and Mass Geocentric State (Ecliptic Final Mass
or Equatorial) (Payload)

Thrust Magnitude Periapsis or Apoapsis
Conditions (Radius,
Velocity, Time)

Thrust Times Orbital Elements

Base Power Level Equatorial Latitude and
Longitude

Exhaust Velocity Final Mass

Table 5-1. Control, Target, and Performance Parameters

The manipulation of trajectories to satisfy mission requirements is

managed in three submodes of TOPSEP which represent successive stages of

trajectory development. These submodes are:
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1. Nominal trajectory propagation

2. Grid generation

3. Targeting and Optimization

a. Trajectory targeting only

b. A combination of trajectory targeting and optimization

c. Trajectory optimization only

Generally, these submodes are employed in order as listed above. However,

any submode may be skipped or used individually if the proper control pro-

file is available. Due to the simplicity of the first two submodes a

brief discussion of their operational procedures is all that is necessary to

understand their analytical basis in TOPSEP. The targeting and optimiza-

tion submode will be reviewed in greater depth.

5.1 NOMINAL TRAJECTORY PROPAGATION

The simplest TOPSEP application is propagation of a single trajectory

for spacecraft ephemeris information. After all the trajectory parameters

are initialized, the trajectory is propagated from the initial state to

the termination condition. TOPSEP performs no additional analysis of

the trajectory when operating in this submode. This submode is also

used for manual manipulation of the control profile.

5.2 GRID GENERATION

The grid generation submode is available to produce a number of tra-

jectories which do not necessarily satisfy mission requirements but pro-

vide a range of trajectory solutions. Thus, the main purpose of the grid

submode is to locate desirable control regions for further examination.
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In turn, each control is incremented a fixed amount while the remaining

controls maintain their nominal values. A single low thrust trajectory

is generated for each control change and the associated target error index

is calculated. Subsequently, contours of constant target error may be

plotted in the control space so that some control regions can be eliminated

from further consideration. Upon completion of the grid, the trajectory

generation mode is terminated and the program user must choose the best

control profile to initialize targeting and optimization or to employ

another grid approach.

5.3 TARGETING AND OPTIMIZATION

The trajectory targeting and optimization submode features a discrete

parameter iteration algorithm which accommodates the non-linear aspects of

the low thrust problem. The algorithm is a modification of Rosen's pro-

jected gradient method (PGM) for non-linear programming (Refs. 5 and 6).

The parameters which have been chosen to shape the trajectory (Table 5-1)

constitute the control profile and are subject to modification by the PGM

algorithm. Based upon the sensitivities of the final S/C mass and state

to control variations, corrections to the profile are computed which

maximize performance while minimizing target errors. The performance is

measured simply by the value of the final spacecraft mass while the target

errors are measured according to the constraint violations. The method

chosen to represent the target errors in terms of a scalar measure is the

quadratic error index which is the weighted sum of the squares of the

target errors.

When the targeting and optimization submode is entered, a nominal

trajectory is propagated directly from the input parameters. A series of
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tests is performed to determine which submode (targeting, optimization or

both) is to be executed. If the target error index is large, the submode

will be exclusively targeting. However, a target error index smaller than

some value (TUP in namelist $TOPSEP) will result in simultaneous targeting

and optimization. Whenever the index is below a specified lower bound

(TLOW in namelist $TOPSEP), the optimization algorithm will be executed.

Prior to the application of the projected gradient algorithm, the

targeting sensitivity matrix S and the performance gradient g, are computed.

Elements of the S matrix represent the sensitivities of individual target

parameters to changes in controls and are used for both targeting and

optimization. Similarly, the elements of the g vector represent the

sensitivity of the performance index to changes in controls although

these elements are used only for optimization. For purposes of targeting

only, S is computed from the integrated state transition matrix (STM)

or by finite differencing techniques and & is ignored. Appendix 7

discusses the formulation of S from the integrated STM. Whenever opti-

mization is to occur, both S and & are constructed by finite differenc-

ing techniques. Following the determination of S and g, a weighting

matrix which amplifies or diminishes the effects of the chosen controls

is calculated. Applying the projected gradient algorithm a control cor-

rection is established. The magnitude of the control change is determined

by computing trial trajectories. The new control profile is simply the

old control profile plus a scalar multiple of the control correction

such that the targeting error index is minimized and/or the performance

index is maximized. If the optimization is complete (the values of the

performance index have converged to a maximum), TOPSEP is terminated.

Otherwise, the submode decision is made again and the cycle is repeated.
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Of primary importance in the targeting and optimization submode is

the selection of the control correction. In the following sections this

selection process will be discussed.

THE PROJECTED GRADIENT METHOD

The projected gradient method has been devised to maximize-a per-

formance index while simultaneously minimizing an error index. Since

maximizing performance is equivalent to minimizing cost in an optimization

sense, PGM's purpose relative to the trajectory problem may be restated as

minimizing fuel expended as well as minimizing target error. The concept

of net cost, which is simply a more realistic assessment of fuel expended,

will be discussed later in this section.

The projected gradient algorithm employs cost-function and constraint

gradient information to replace the multi-dimensional targeting and opti-

mization problem by an equivalent sequence of one-dimensional searches

(Ref. 7). In this manner, it solves a difficult multi-dimensional problem

by solving a sequence of simpler problems. In general, at the initiation

of the iteration sequence, PGM primarily satisfies the constraint require-

ments. As the iteration process proceeds, the emphasis changes fron con-

straint satisfaction to cost-function reduction.

Since numerous analytical developments of this technique are available

(Refs. 5 and 6), this presentation will primarily emphasize the geome-

trical aspects of the algorithm. Clearly, the geometric interpretation of

the algorithm is the motivation for the logic contained in TOPSEP, and a

basic understanding of these concepts is usually sufficient to enable the

user to efficiently manipulate OTOPSEP input and to handle diverse mission

problems.
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PROBLEM FORMULATION

The projected gradient method solves the following non-linear pro-

gramming problem:

Determine the values of the control variables, u, that minimize the cost

function (optimization variable)

F (u)

subject to the equality constraints

e (x(u)) = T (x(u)) - Td = 0'

u U, an M-dimensional control space

T T, an N-dimensional target space

x X, a six-dimensional state space

M > N

where the elements of e, T, T , and x are referred to as the target error,

the target values, the desired target values, and the final state respec-

tively; and F is a scalar valued function measuring system cost.

In an attempt to solve the constrained optimization problem, iterative

methods are employed. The following scheme briefly describes the process

occurring in TOPSEP.

* Guess u (In general u will not satisfy the constraints nor

minimize F).
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* Determine a correction au such that

** F(u +Au) F(uo) and

. II e +u)ll < IIe II

9 Iterate until

*o F is minimized and

** 1 ell < , a pre-determined tolerance

NOMENCLATURE AND CONCEPTS

To fascilitate the discussion of the projected gradient algorithm,

the following nomenclature and basic concepts will be introduced. x denotes

a column vector whose elements are x., where i = 1,2, .- , n and n is the

dimension of the space containing x. YT denotes the transpose of the real

matrix Y. The feasible region defined in the M-dimensional control space

within which PGM operates is the restricted space

S 4.. i L U~ iMA i = 1i, 2, , M.

MIN MAX

The equality condition implies that the control is on a bound. The cost

gradient g is an M-vector of partial derivatives and is defined as

The sensitivity matrix is that matrix whose rows are the gradients to the

equality constraints, and is denoted by

)= ae(u)

where e is an N-dimensional vector. The target error function is defined

to be
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where W is a target weighting matrix which will be -defined 
later.

e

Corresponding to each control vector u in the control space 
U,

there is an error vector e. Let A be the set of all u such that

(u) = 0 .

A then represents all the control vectors satisfying 
zero-target error.

o

It can be shown (Reference 6) that A defines an M-N dimensional non-linear

hypersurface or manifold in U. Unfortunately, Ao cannot be defined

explicitly; hence, one cannot easily find a u which is an element of Ao'

However, Ao can be estimated implicity via the 
sensitivity matrix.

Let A be the set of all u such that
C

e(u) = c,

where c is a vector of constants. Thus, Ac represents a non-linear mani-

fold containing those control vectors which provide 
constant target error.

It can also be shown (Reference 6) that any 1 in the control 
space is

contained in one and only one Ac. At a given u, the corresponding

non-linear manifold A may be approximated by a linear manifold B(u) which

is defined explicitly by the sensitivity matrix S(u). 
The linear manifold

B(u) may be considered a tangent hyperplane 
to Ac at u. The orientation

of B(u) in the control space allows one to define a search direction to Ao

which is orthogonal to B(u). This search is in the direction of maximum

decreasing target error.

Let B() denote the orthogonal complement to B(u). One can demon-

strate (Reference 6) that T(u) is the unique linear space that can be
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translated to obtain the linear manifold B). Furthermore, there

exist unique orthogonal projection operators P(u) and P(u) that resolve

any vector in the control space into its corresponding components in

B(u) and B(u), respectively; that is

u = Ps) u + P(u) u.

In particular,
, sT -1

P) = S (SST) S (5-1)

and

P(u) = I- P

where I is an identity matrix. The projection operators P and P thus pro-

vide a simple method for reconstructing a general vectorAu emanating from

u into its two components in B and B. In a discussion to follow later in

this section, it will be explained how Du may be defined such that PAu

represents the control correction to minimize the target error and Pau

represents the control correction to minimize cost.

The final key concept employed by PGM is the idea of problem scaling.

The purpose of problem scaling is to increase the efficiency of the tar-

geting and optimization algorithms by transforming the original problem

into an equivalent problem that is numerically easier to solve.

To numerically scale a problem, two general types of scaling are

required: 1) control variable scaling, and 2) target variable scaling.

Control variable scaling is accomplished by defining a positive diagonal

scaling matrix, Wu (UWATE in namelist $TOPSEP), such that the weighted

control variables are given by

U' = W U .
-u
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Similarly, target variable weighting is accomplished by defining a

positive diagonal scaling matrix, W (TARTOL in namelist $TOPSEP), such
e

that the weighted target variables are

T'(u) = [We T (W u')

The target error index is then

E(u) = e 'T e

TOPSEP contains several options for computing the control variable

weighting matrix. The option most often used is the normalization scaling

matrix (See Appendix 6 for other options).

[Wu ii = 1

The target variable weighting matrix is always computed as the reciprocal

of the constraint tolerances and is given by

[W1 .. = 1

Si"

th
where C. is the tolerance for the i target error.

For simplicity, the following discussion of the algorithm assumes an

appropriately scaled problem. However, the scaled equations can be obtained

by making the following simple substitutions.

u replaced by u'

e replaced by e'

S replaced by We IS] Lu - 1l

g replaced by WWu 1



44

DIRECTION OF SEARCH

The concept of the direction of search in control space needs

slightly more elaboration. The direction of search is nothing more than

a particular line in the control space along which the target error is

reduced or along which the cost function is decreased. In a more precise

sense, the direction of search at u is a half-ray emanating from u. Thus,

for any positive scalar, l, the equation

u = + au

sets the limits of this half-ray and represents a "step" in the direction

u from u * This is illustrated in Figure 5-1.

u
U3

U
2

Figure 5-1. Direction of Search

This concept of direction-of-search is particularly important since it

enables the M-dimensional non-linear programming problem to be replaced by

a sequence of one-dimensional minimizations. What remains to be explained

is: 1) how to select the direction of search, and 2) how to determine

the step size in that direction.
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The projected gradient method uses 
two basic search directions.

For this discussion they will be termed 
constraint and optimization

directions. PGM proceeds by taking successive 
steps in one or the other

of these two directions. The computation of each of these search 
direc-

tions is described below at a particular 
point u in the M-dimensional con-

trol space where N constraints (target conditions) are enforced.

CONSTRAINT DIRECTION

The constraint direction depends critically on 
the number of targets.

Two cases are distinguished below:

1. If N<M, then that unique control correction4u 
is sought which

solves the linearized constraint equation

s1AR + e (u) = 0 (5-2)

and minimizes the norm of T . The ,solutions to the preceding

vector equation define the M-N dimensional linear manifold Bo ()

which is an estimate of the non-linear manifold 
Ao (zero-target

error). The desired minimum norm correction u is then the vector

of minimum length in the control space from u to the linear mani-

fold B (u), thus requiring A to be orthogonal to B (u).
0 

0

Application of the linear operators P 
and P allow one to represent

A as the sum of two orthogonal vectors relative 
to Bo( ) or

u P ^u + Pau;

however,
P = 0

since there are no components of u in Bo . From equation (5-1)

A Cmay be expressed as
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-1T
Au = S (SS) Sa u

which may be reduced to
-1

Au = -S (SST) e (u)

using the constraint equation (5-2). This correction is illus-

trated in Figure 5-2.

Au, minimum norm Bo(u), intersection of

correction linearized constraints

First linearized Second linearized

constraint (el=0) constraint (e2

Figure 5-2. Illustration of Minimum Norm Constraint Direction

for N = 2, Me 3.

The direction of search then is simply taken to be this minimum

norm correction to the linearized constraints,

2. If N = M there is unique solution to the linearized constraint

equations without the additonal requirement that the norm of

the control correction be minimized. The solution for A reduces

to the familiar Newton-Raphson formula for solving M equations

with M unknowns; namely



47

A -1A u e ()

The Newton-Raphson correction is illustrated geometrically 
in

Figure 5-3.

Second linearized
constraint (e2=0)

A , Newton-Raphson
Third linearized correction

constraint (e3=0)

Firs.t linearized linearized constraints
constraint (el=0)

Figure 5-3. Illustration of Newton-Raphson constraint 
direction for

N = M = 3

OPTIMIZATION DIRECTION

When the number of targets is less than the number of controls, it

is then possible to minimize the cost function F() assuming, of course,

that Lu is some non-optimal control profile. Obviously, the steepest

descent direction, - g(), would be the best local search direction for

reducing the cost function. Such a direction, however, could produce

unacceptable constraint violations. To avoid this difficulty PGM ortho-

gonally projects the unconstrained negative 
gradient,- g, onto the local



48

linearized constraint manifold Bc () . By searching in the direction of

this negative projected gradient the algorithm can guarantee in a linear

sense that there is no further constraint violation than that of e() .

To calculate this direction, it is only necessary to apply to - g the

projection operator P() which will map the vector into its component on

the linear manifold Bc (u . Thus,

=u P g (u )

-l -
= -I - sT (SST) S] g )

COMBINED TARGETING AND OPTIMIZATION DIRECTION

When it is desirable to minimize the cost function as well as reducing

the target error the constraint direction and optimization direction may

be combined such that the resulting control correction is of the form

S= Au-1 2

where Au is the optimization correction and Au 2 is the constraint correc-

tion. Note that Au 1 andAu 2 are orthogonal components ofau . Depending

upon the magnitude of the target error, one may want 
to emphasize either

optimization or targeting. Since this decision is rather subjective and

linked directly to the degree of problem non-linearity, an option is pro-

vided to weight Au (See Page 50) in one of its component directions.

Figure 5-4 and Figure 5-5 illustrate the geometric 
interpretation of the

resulting control.correction.
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\ /I

, Nonlinear Constraint
Manifold (e=O) Constrained

Optimum

Figure 5-4. Geometric Interpretation of a Combined Targeting

and Optimization Control Correction, N=1, M=3

Intersection of Bc(u) and B ()

c ~-

I

Figure 5-5. Illustration of Combined Targeting and Optimization

Control Correction As Seen In B cC),

(Enlargement of Bc (I) from Figure 5-4).
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The total control correction is constructed as follows, where d is an input

scala = II * d * Au + Au 2

lJ Ul II
(DP2 in namelist $TOPSEP).Thus, one has the flexibility of determining

the magnitude of the optimization correction relative to the magnitude of

the constraint correction. The optimization correction can then be written

as

- 1  -1
S = -- e T (SS T) e * ( + d2 ) (I-ST (SST) S) g .

(I - ST (SST -1 S) gI

The norm of the control correction.Au which is obtained by summingAu and

u2,is not as important as the direction. The resulting half-ray provides

the basic search direction with which to calculate the trial step.

TRIAL STEP-SIZE CALCULATION

At any particular point u in the control space, the PGM algorithm

proceeds by reducing the multi-dimensional problem to a one-dimensional

search in the direction prescribed by the constraint or optimization con-

trol change vector. Once the initial point u and the direction of search

u are specified, the problem reduces to the numerical minimization of a

function of a single variable;,namely, the step scale factor I . PGM per-

forms this numerical minimization by polynomial interpolation based on

function values along the search ray and the function's value and slope at

the starting point.

CONSTRAINT DIRECTION

The function to be minimized along the constraint directionAu 2 is-L2



51

E(3), the sum of the squares of the target errors.

TA + 4A
E( ) = e (u + Z2 [ We e ( + a )

Evaluation of the function at * = 0 results in

E (0)= T (A) We e ()

Differentiation via the chain rule yields

E( ) = 2eT () S u

If constraints are reasonably linear, a good initial estimate for the

minimizing 6 is one.

OPTIMIZATION DIRECTION

The function to be minimized along the optimization direction Au is

the estimated net cost function C(W), where

-11c() = F(u + ul )  F(u) + g - (ss) - + l

Change in cost produced Linearized approximation to change
by a step of length in cost required to perform a minimum

JA 1j along u1  norm correction in order to retarget

Clearly,

C(O) =  - gS (SS ) e ()

By expanding C(O) in a taylor series in I about 0 = 0, and by making use

of the fact that P u = 0, it can be shown that

-1These properties are illustrated in Figure 5-6.

These properties are illustrated in Figure 5-6.
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Both the constraint and optimization directions are based on a

sensitivity matrix assuming a linear space. Due to nonlinearities in the

problem, it is often necessary to restrict the trial step such that

unexpected increases in cost or target error are reduced. In addition,

the control correction Au does not reflect the "nearness" of control 
bounds

as long as u is not on any bound. Thus, the trial step must also be

restricted so that the new control vector remains within the bounded 
con-

trol space. For these reasons a maximum limit is placed on 1 . After

Estimated change
in cost function /
due to constraint /
correction /

Cost index

Estimate net
cost function

* 0 Slope

Equal
slopes

. (optimal step length) Change in cost
function along

/ lo, direction of
search

Figure 5-6. Properties of net-cost function along the direction 
of

search.
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Au is computed, a calculation is made to find the 6i along the

search direction which will size a trial step that intersects 
the

boundary of the feasible region. This value is compared to the

maximum step allowed by.the user to counter the nonlinearity prob-

lem. The smaller value is specified as the maximumr allowed

during the search. A method has been devised to alleviate the

problem of a control which is very near a boundary. 
A tolerance

region is defined in the neighborhood of the boundary surface such

that if the control is within this region and A u intersects the

boundary the search to minimize the net cost or target error can

continue along the boundary without calculating a new sensitivity

matrix. Once a control element reaches one of its bounds it becomes

inactive. Unless a subsequent correction for this control element

is back into the feasible region it remains inactive.

ONE DIMENSIONAL MINIMIZATION

Nonvariant minimization in PGM is performed exclusively by

polynominal interpolation. The actual function to be minimized is

fitted with one or more quadratic or cubic polynominals until a

sufficiently accurate curve fit is obtained. -The minimum of this

curve and the corresponding scale factor can easily be found analyt-

ically.

The one-dimensional search proceeds by taking trial steps in

the Au direction to obtain information about the function to be

minimized. If 'A u is a constraint correction,the quadratic

error function is evaluated; if is an optimization correction,
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the net-cost function is evaluated; and if TAu is a combined cor-

rectiona function which is a weighted combination of the error

function and net-cost function is evaluated.

The minimization routine makes ingenious use of all the infor-

mation it accumulates. The following curve-fitting techniques are

applied in order.

1. Quadratic polynomial fit: two points-one slope;

2. Cubic polynomial fit: three points-one slope;

3. Quadratic polynomial fit: three points;

4. Cubic polynomial fit: four points.

Each time a trial step is taken, the function which is evaluated is

used as a trial point to analytically determine the next trial step.

The analytical formulation of the a-bove curve fits may be found in

the subroutine description of MINMUM in the Program Manual.
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6. LINEAR ERROR ANALYSIS - GODSEP

GODSEP analyzes spacecraft and trajectory related dispersions as

a function of expected uncertainties in dynamic and navigation parameters.

The ensemble of expected errors is studied without actually simulating

individual trajectories by applying linear techniques. That is, small

deviations about a reference trajectory are linearly related to other

deviations by a transformation matrix. For example, the state transition

matrix relates position and velocity deviations about the reference tra-

jectory from one time point to another. The ensemble of errors, or covar-

iance, is assumed to have a zero-mean Gaussian distribution, except for

special processes.

Probabalistic a-priori errors in the environment, spacecraft and

tracking systems are propagated in time along the reference trajectory

through sequential events such as orbit determination (OD) and guidance

corrections. Two types of ensemble error or covariances are distinguished-

knowledge, which reflects the ability of the OD algorithm to estimate the

spacecraft state and other parameters; and control, which represents the

dispersions of the actual spacecraft trajectory about the reference.

Covariance propagation is done by either integration of covariance varia-

tional equations, or by the state transition matrix method.

The error analysis proceeds sequentially from start time through each

specified trajectory event to final time. Event types available are

measurement, propagation, eigenvector, prediction, thrust switching, and

guidance. A measurement event processes tracking data at a time point by

applying the user specified OD algorithm. Available to the user are both

Kalman-Schmidt (K-S) and sequential weighted least squares (WLS) filters.
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GODSEP modularity also allows the user to insert his own filter algorithm

quite easily. The filters are distinguished by their methods of gain

matrix calculation and subsequent update of the knowledge covariance.

A propagation event merely updates the knowledge (and control) covari-

ance at the event time. Its primary value is in maintaining accurate covari-

ance values during long propagations by forcing computation of the effective

process noise over predetermined, user-specified intervals.

An eigenvector event is used for information display and behaves similar

to a propagation event. Covariance matrix sub-blocks are converted to

standard deviations and correlation coefficients. It also computes eigen-

values, their square roots, and eigenvectors for the position and velocity

3x3 sub-blocks of the state covariance matrix. Thrust switching events are

simply eigenvector events at the time where a change 
in the number of

thrusters or thrust policy has occurred.

A guidance event is an update of the control covariance 
to reflect

implementation of a trajectory correction. A correction is not performed

deterministically, but only in a probablistic sense. The guidance event

computes expected correction covariances (Av or thrust control), target

error covariances before and after the guidance event, and the updated state

control covariance.

The following sections will describe in more detail the analytical

foundations of GODSEP.

6.1 AUGMENTED STATE

The augmented state discussed previously in TRAJ (Section 4.5)

includes dynamic parameters besides the basic spacecraft position 
and

velocity vectors. In GODSEP, the augmentation not only adds measurement
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related parameters to this list, but also distinguishes between solve-

for and consider. Solve-for parameters are directly estimated by the OD

process. Consider parameters are system uncertainties which are recog-

nized and accounted for in the estimation algorithm but are not estimated,

usually because the process cannot be adequately modeled or there is a high

correlation between two (or more) parameters which might cause numerical

difficulties if both were solved-for.

The possible augmented parameters that can be either solved-for or

considered are

i thrust bias (magnitude and pointing)

dynamic J2 zonal harmonic

. gravitational constants of primary body and/or sun

measure-f * tracking station locations
ment

* sensor bias (range, range-rate, etc.)

Time varying thrust noise (magnitude and pointing) can only be considered

in the standard GODSEP analysis, but can be solved-for (or considered) in

the covariance integration option (PDOT in Section 6.2). A third possible

category, in addition to solve-for and consider, is the ignore parameter

used in generalized covariance analysis (Section 6.5).

The total ensemble of state uncertainties, or error covariance,

including all augmented parameters, is formed by applying the expected

value operation on state deviations from their reference values.

P = E [x xT]

The covariance P contains uncertainties and their respective correlations

for all parameters in the augmented state. There are two covariances,
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corresponding to control and knowledge, which are computed in parallel

through a GODSEP analysis. Starting with a-priori values, each P is

modified between events by trajectory propagation effects, and 
at events

by either OD (knowledge) or by guidance corrections (control).

6.2 COVARIANCE PROPAGATION

There are two methods.available in GODSEP for propagating 
covariances

between events: transition matrices (f) and explicit covariance integration

(PDOT). Although these two techniques were discussed in 
TRAJ, Sections 4.5

and 4.6, respectively, their importance in GODSEP requires 
additional explana-

tion.

The most common form of covariance propagation, both in GODSEP 
and in

other linear error analyses, makes use of transition matrices. 
This is

..because the .4's are a characteristic of the trajectory, not 
of the covari-

ance. A covariance P(tl) is propagated from time tl to, t 2 by

P(t2) = 21 P(t) 21 + 21(6-1)

where 621 = 4 (t2"tl) and Q21= Q(t2'tl) is an effective process noise

covariance.

Transition matrices can be stored, for example on magnetic tape, to

be used for analyses of different error source levels and navigation 
strate-

gies. Obviously, if 4's have been computed between the intervals to, 
tl'

t2 , ..-tN, they can be used to 
propagate any P as long as the set of pro-

pagation times is a subset or equal to the original set. Transition matrices

can always be chained to cover desired propagation intervals, for example,

letting 31 = 4(t 3,tl) = 9(t3't 2 ) (t 2 ' t l )

then P(t3) = Q31 P(t) 031 + 31
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The method of computing and storing $'s (on the STM file) over a grid

of time points is used in GODSEP to facilitate parametric error analyses.

Since covariance propagation accounts for uncertainties in all

dynamic parameters which have been augmented to the basic spacecraft state,

the transition matrix must have the same augmentation. In actual operation,

TRAJ provides a transition matrix containing only dynamic variations which

GODSEP must augment with appropriate rows and columns of zeros (for measure-

ment parameters) such that the total augmented $ is consistent with P.

An additional requirement for GODSEP is the modification of the thrust

sensitivity matrix 9 computed by TRAJ as part of the augmented transition

matrix.
Sx(t 2)

9 (t 2 ,t 1 ) a u

where u'are constant thrust c'ontrols (proportionality, cone and clock) over

the interval (tl,t 2 ). The 0 matrix is used in GODSEP to map thrust biases

into spacecraft state uncertainties. However, GODSEP thrust biases refer

to a single thruster. If more thrusters are operating, and if each operating

thruster is assumed to be independent of all others in terms of bias, then

the total effective bias is simply the single thruster bias divided by

where N is the number of thrusters, or

91 = N

The effective process noise, Q , is a very important conditioning

term on the covariance propagation. Because a rigorous mathematical com-

putation of Q involves (1) modeling of a process or processes which are

ill-defined and (2) evaluation of complex double integrals, GODSEP uses a
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simple analytic approximation. The effective process noise assumes that

time-varying thrust errors appear as stationary first-order Gauss Markov

processes. The more rigorous modeling is performed in the PDOT option to

be discussed shortly. The relationship between P and Q precludes the aug-

mented state from containing time-varying thrust terms so that process noise

takes on the appearance of consider parameters.

The effective noise over a time interval t1 to t2 directly affects

only the spacecraft position and velocity uncertainties at t2.

L o o O T

21 = 1/2At o 2 21 Io H I

where T is the 6x6 state transition sub-matrix of the augmented transition

matrix (4),

H1 = g(tl) p gT (t1 )

H2 = g(t2) 0( P gT (t2)

TI T2/N 0 0

Pt 0 T2  2 /N 0

0 0  T3 3 2IN
3 3

0 0 03

At =  t2 - tl

T21 2 2 ', 3 variances in thrust proportionality, cone, clock,
respectively.

N = number of operating thrusters

9 (see Section 4.1 and Appendix 4)

g= process noise correlation timet

TI, T2, T3 = process noise correlation timeS
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Thrust proportionality error is scaled by the number of thrusters

because it is assumed that time-varying noise is independent for each

thruster, just as bias is. Thrust pointing noise is also scaled

because it is assumed to be caused by the thrust vector control system

which currently consists of gimbaling each thruster independently.

This empirical model for Q is generally effective over propagation

intervals on the order of 2 days or less. Propagation events can be

employed in GODSEP to break up longer intervals and to ensure 
the accuracy

of Q.

GODSEP has the capability to model two simultaneous processes

in each of the three noise elements: thrust proportionality and

two orthogonal angles (such as pitch and yaw). The first process is

always assumed to be thruster dependent whereas the second 
process can

be either thruster dependent or independent. A thruster dependent

process is proportional to the number of operating thrusters, e.g.,

errors in thruster alignment and beam divergence. A thruster indepen-

dent process occurs no matter how many thrusters are operating, e.g.,

errors related to the inertial reference system.

For Earth orbital missions, a potentially important process is

the thrust start-up sequence after exiting from solar occultation.

A small but significant amount of time is required to restart the

thrusters depending upon thermal conditions and thruster design.

Although thruster delay time can be included during the reference

trajectory generation (TOPSEP), there are still uncertainties 
in

thrust initiation caused by errors in thermal modeling and
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calibration, etc. Thrust restart error is modeled in GODSEP as an

effective start-up time uncertainty. The effective process noise

matrix, Q, at nominal thrust start time is

2 T

on

where g is the sensitivity of vehicle start with respect to thrust

on time, that is, g = x/ ton, and Ton2  is the variance of

thrust on time, that is, Oon = E [Aton ,ton "

The second method of covariance propagation, PDOT, is used primarily

to examine thrust noise effects. Process modeling is mathematically

rigorous and includes augmentation of thrust noise 
parameters to the basic

state. Recalling from Section 4.1, the linearized equations of motion,

Sx = F

and from Section 4.6, the corresponding covariance matrix differential

equations
• pT
P = FP +PF + Q

where x is the augmented state which, for PDOT, includes .at most space-

craft position and velocity, thrust biases, thrust noise and tracking sta-

tion locations, F is the variation matrix, and Q is a white noise 
term

which affects only the thrust noise directly. If thrust noise is omitted,

then the integrated covariance would in theory be identical to a similarly

augmented covariance propagated by transition matrices.

In PDOT, the time-varying noise is modeled as a stationary Gauss-
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Markov process, as in Q,

= 60 1 O + W

TJ

where ',) is a 6x1 vector of independent noise parameters corresponding to

thrust proportionality, cone and clock, each of which is described by two

processes having their own distinct correlation times (T). This permits

the study of superimposed and multi-process effects. W is a white noise

component which drives the time varying noise (and defines the only non-

zero term of Q which is E [W W ).

Since J is in the desired form of the linearized equations of motion,

it can easily be augmented to the state vector (and covariance). Thus,

w can be solved-for in the PDOT mode although in reality this practice is

questionable because of the c. modeling assumptions - who knows how thrust

noise really behaves?

One of the more useful applications of PDOT is in refining the form

of effective noise, Q, for a particular mission and in verifying the

explicit assumption in Q of zero correlation between noise and state para-

meters.

Whether state transition matrices or PDOT is used for covariance

propagation, an auxilliary computation is the vehicle mass uncertainty.

Since mass and thrust magnitude uncertainties are indistinguishable

in their trajectory effects, that is, they are correlated one to one,

GODSEP has chosen to model thrust (acceleration proportionality) magni-

tude explicitly, and provide the approximate equivalent mass uncertainty

as supplementary information.
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Two types of mass uncertainty are distinguished: knowledge

(estimated) and control (actual). Estimated mass uncertainty is the

instantaneous knowledge error in thrust magnitude, bias and noise.

estimated m2 = ( b 2 + an )

2 2 2
where 2 2' ( 2 , On are the variances in mass, thrust bias

m ab an

proportionality (from Pk) and thrust noise proportionality (from Pk

or Q), respectively.

Actual mass uncertainty is the cumulative mass variation reflected

by the control error covariance. The actual mass deviation from the

reference at time t + A t based upon uncertainties from time t is

actual m (t + A t) = [ m(t) + ~ ab At 2 + 2 an2  2

S[1-e " p 2

where m, ob and (an are averaged ever the interval At, c is the

exhaust velocity and T the correlation time. ab (and n for PDOT)

are obtained from the augmented control covariance. Accuracy of the

mass variance computation depends upon the event schedule because GODSEP

2
evaluates a" from one event to the next.

m
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6.3 MEASUREMENT TYPES

In a linear error analysis, the reference trajectory deterministically

characterizes the motion of the S/C, and no real state vector estimation

is explicitly performed in GODSEP. Rather, an orbit determination anal-

ysis estimates how well the state vector can be determined if the S/C

were to move along the reference trajectory and were to be observed as

directed by the analyst. In this sense, the term "orbit determination"

refers to the calculation of a knowledge covariance based upon the proc-

essing of modeled observational data. This section of the Analytic Manual

describes the data types and mathematical models that have been implemented

in GODSEP. The next section will treat the problem of filter formulation

and the process of updating the knowledge covariance.

When an observation is to be simulated in GODSEP, the knowledge

covariance is propagated to the scheduled measurement point and is made

available to be updated by the filter. Before this can happen, it is

necessary to evaluate the observation matrix which relates the observables

to the state vector. Given an arbitrary vector (or scalar) measurement

y = y (X) where X is the total augmented state consisting of

x spacecraft position and velocity

X = u = dynamic consider parameters

v measurement consider parameters

w ignore parameters

then the linearized measurement, which assumes small deviations from the

nominal, is

y = HS x+H s +H u+H v +H w
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where H =, .. , H - are the observation matrices,x w

all of which are computed analytically in GODSEP.

GODSEP has the capability of processing the following measurement

types:

o 2-way range

o 2-way doppler

o 3-way range

o 3-way doppler

earth- o simultaneous 2-way and 3-way range
based

o simultaneous 2-way and 3-way doppler

o differenced 2-way and 3-way range

o differenced 2-way and 3-way doppler

o azimuth and elevation angles

o horizon scanner angles

spacecraft o star-planet horizon angles
based

o apparent planet diameter angle

For Earth based data types, nine tracking stations are available.

The default station locations are intended to provide global coverage

with Fairbanks, Alaska having the highest geographic latitude (640)

and Canberra, Australia at the lowest latitude (-350). To reduce

the amount of Earth based tracking, spacecraft based data types are

often used in a semi- or fully autonomous system.
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The following definitions of position and velocity 
vectors are neces-

sary to relate the mission geometry to the observable 
quantities. All

vectors are assumed to be column vectors and are expressed 
relative to an

inertial, ecliptic coordinate frame, unless otherwise noted.

, = S/C heliocentric cartesian position and velocity

EE = Earth heliocentric cartesian position and velocity

-EStation geocentric cartesian position and velocity

x2,1 = Station 2 geocentric cartesian position and velocity

Station 2 geocentric S/C position and velocity relative to Station I

'-2 = S/C position and velocity relative to Station 2

1'P2 Unit vectors defining direction of S/C from

Stations 1 and 2 respectively
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,0 i = S/C range and range-rate from Station 1

P2,P2  = S/C range and range-rate from Station 
2

3, 3  = 3-way range and range-rate

e, A& = Differenced 2-way and 3-way range and range-rate

S , Geocentric spherical or cylindrical coordinates of

Stations 1 & 2, s = (r, 0, 2 ) or (r s ,  ,7)

Z = Zero vector, 3 x 1

I = Identity matrix, 3 x 3 unless noted otherwise

S/C

P-2

Figure 6-1. Tracking Geometry for Range and Range-Rate
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We first note one identity which is used numerous times in the follow-

ing derivations. Given the vector a = b - c and its corresponding

unit vector = a/ laI ,

LaI a a T (6-2.1)

Two-way range and range rate from Station 1 are modeled

A

where

-i -

-1 - -E -1

Differentiation yields the following results.

/T= eT+ T ex

x -1 x 1

=- - I +
= e1[ ~ e1 e1T~ T
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1= l

x

or

/ ) , Z (6-2.2)

The remainder of the partials are produced in like manner but for

brevity only the results will be printed

1 1= - 1  .e' x-1) (6-2.3)

/=6 1k - ^ ] T (6-2.4)
(xx) = ,

1 1 ~ (6-2.5)
/ s1 ac7(x,t) S1

For use in Equations 6-2.3 and 6-2.5 above, we need the partial derivatives

of the instantaneous geocentric ecliptic state of the tracking station

(xi and g: ) with respect to either its spherical or cylindrical coordinates.
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The geographic position of a tracking station is defined in terms of

radius (r), latitude ( ), and longitude (A) when spherical coordinates

are being used and in terms of spin radius (rs), longitude (A) and

z-height (z) for cylindrical coordinates. For most Earth orbit applica-

tions, the tracking stations are specified in terms of spherical coor-

dinates.

If G represents the sidereal hour angle of Greenwich at launch,t

the universal time (U.T) at the launch epoch, t the current U.T. after

the launch epoch, and w the sidereal rotation rate of the Earth, then

we have the geocentric ecliptic state of a tracking station being

given by

S=  r cos cos (A+ G + w (t-t ))

E r cos 4 sin (A + G + w (t-t ))

r sin

for position, and

= -r cos sin (I + G +w (t-to))

+Or cos cos () + G + (t-to))

0

for velocity. If the geographic station location is specified in terms

of cylindrical coordinates, then the geocentric ecliptic state is given

by
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rs cos (-+ G +&o (t-to))

x = E r sin (A+ G +cW (t-t ))

z

and

- s r sin ( A + G + W (t-t ))

= E + r cos (' + G + W(t-t ))

The matrix E, appearing in the above expressions, is the 3x3 trans-

formation from the geocentric equatorial to the ecliptic Cartesian

frame. The elements of E are assumed to be constants even though

they depend on the obliquity of the Earth's equatorial plane to the

ecliptic plane. In other words, the temporal variation of the

obliquity is assumed to be negligible over the duration of missions

for which the program is used.

First looking at the partials of xI and x with respect to the

spherical coordinates, sl = (r, *, A ), we have

cos 4 cos @ -r sin Q cos 0 -r cos @ sine

= E cos * sin e -r sin sin 8 r cos cos S

sin * r cos 0

and
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- o cos 4 sin e W*r sin * sin e - c r cos cos e

- C4 cos cos e Or sin cos E - Wr cos sin

~so o0 0 0

where 8 is defined as

S= + G + o(t-to).

Next we give the partials corresponding to those written above,

but for the cylindrical coordinates, sI 
= (rs, , z). They are given

as

cos @ -r sin e 0
S

l sin s r cos 0 0
= E s

0 0 1

and

- cosin - wr cos e 0

S= E o cos 8 - r sin 0

0 0 0
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Three-way range and range-rate are measured with one station on the

DSN uplink and another station on the downlink. Three-way data may

be processed by itself, simultaneously with conventional two-way data,

or as differenced two-way minus three-way data, also knownas QVLBI

(quasi-very long baseline interferometry). Three-way data types are

modeled as the sum of the two-way types plus a timing error term for

ranging and a frequency bias term for range-rate.

3 1 e2 + c At

3 = i + 2 + c
3 1 2 f

where At is the timing error, c the speed of light, and /f the

frequency bias term which results from drift error between the frequency

standards at the two separate tracking stations. The sensitivity

partials for the three-way data types are formed by adding the par-

tials computed for each station individually. The c At. and

c /f terms are treated either as biases or part of the white

noise term. The differenced data types are modeled:

A = 1 - 2 - cA t

The partials for the differenced data types are formed by differ-

encing the individual partials, with the following exception. Since
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ae_ [ -

A A

and I and '2 are very nearly equal (as are I and ) for

Earth orbital missions, we use the following substitutions

ax = x - x

a = + e2 ] T A

^+ T

A A

1 A& = [ e 2 ] (6-2.8)

For Earth orbital missions, one of the key navigation instruments

is the infra-red horizon sensor (H.S.). The basic H.S. measurement

consists of four angles which are meausred by optically scanning the

figure of the Earth in two orthogonal directions. Two angles are

evaluated in each direction and measure the apparent separation

between a reference measurement axis and the optically sensed contracts

with the horizon. Since these data determine the angular diameter and

direction cosines to the Earth, a single H.S. observation is sufficient,

in theory, to fix the S/C position. The only.additional requirement is

an accurate estimate of the S/C inertial attitude.

For the purpose of mathematically modeling H.S. observations, the

set of four angles is reduced to three equivalent angular measurements,
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e1' 92' and 93" These new angles define the position vector, p, to

the geocenter as seen in the measurement coordinate system. (See

Figure 6-2.) 01 is measured in the el, e2  plane and is the angle

between the e axis and the projection of p into that plane. 93 is

analogous to @1 except it is measured in the e3, e2  plane, relative

to the e3 axis. 92 is just the apparent angular radius subtended by

the Earth. Thus, the observation equations are given by

-1 pi( cos 1 2

S = 2 sin
-  e hco22  2( P 2

and 3  = cos 2 p3 2 '
(p3 +  2)

where R is the radius of the Earth and h is the altitude of the
e co2

detectible CO2 layer.

A

Figure 6-2. Horizon Sensor Measurement System
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Since the attitude of the vehicle is nominally assumed to be known, the

A AA
orientation of the el, e2' e3 axes is defined such that e2 points

vertically down, el is directed along the local horizontal in the direc-

A
tion of motion, and e3 forms a right-handed orthonormal traid. With this

S A A
definition for the el, e2, e3 system, an arbitrary vector can.be con-

veniently mapped into an inertial representation by multiplying the

vector by the transformation matrix, R, defined by

R =
-r I vx r r vxr

r x ' r V xr

and r and v are the position and velocity vectors evaluated on the

reference trajectory at the observation point.

In GODSEP, the quantities essential to the error analysis are the

observation partials which relate the measurement residuals to the geo-

centric state of the S/C. To obtain these partials, the observation

equations are differentiated with respect to p. This gives

wE = H p

where
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p .c( zG, ___ __ ___

o0

To relate these measurement residuals to the geocentric state, we use the

rotation matrix discussed above, i.e.,

6H rp- -H r

where 6 r is a position deviation relative to the reference position. The

negative sign appears here because p is in a direction opposite to r.
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The following definitions are used in the azimuth and elevation

angle partials (See Figure 6-3).

S = S/C azimuth, measured positive from north toward east

S= S/C elevation

e = S/C range vector from station

A

(D Unit vector in e direction

p = Projection of e onto plane normal to xm -s

x = Geocentric equatorial S/C position

x Heliocentric ecliptic S/C position
-c

x = Geocentric equatorial station position
-S

x = Unit vector in x directions -s

w Unit vector orthogonal to x and pole (local east
-s

from station)

u = Unit vector orthogonal to x and w (local north from
-s

station)

E = Transformation from equatorial to ecliptic coordinates.

For simplicity, all azimuth and elevation partials are derived in

geocentric equatorial cartesian coordinates and then transformed to

ecliptic.
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z

SA

A /

xs

Figure 6-3. Tracking Geometry for Azimuth and Elevation Angles

Referring to Figure 6-3, we see that the projection of e onto the
x direction will have magnitude sin , or-so
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AT A
sin = x T

1 ^ ^ TS cos 1x sing (6-2.9)

x o -s -s sn

x1 - sin x x (6-2.10)

s s

Es = s (6-2.11)

A
Again referring to Figure 6-2, the projection of E onto 3 will have

.magni-tude ..cos s-int , or

sino = sec 1 1T 
T

= tant tan x a

(6-2.12)

a = secoa sec( w - tan 4

xs= tan -stan s - aT

where

1 rs ^
b - secd sec (w -w 9)w (6-2.13)

r L x y y x

x, Ey, W , W are components are w and
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f s = x s s (6-2.14)

For use in Equations 6-2.11 and 6-2.13 above

xI /r s  -x2  0
s s

-s - ( x2 /r 0 (6-2.15)
/s (r s z) 2s rs 1s

0 0 1

where x and x2  are components of x . Finally, the partials
s s

computed in equatorial coordinates must be transformed into ecliptic

(, ) - a(o, ) ET (6-12.16)

" x " x

For vehicle based optical measurements other than the horizon

sensor observations, we use the following defintions:

= spacecraft geocentric Cartesian position,

= unit vector of star direction cosines,

R = radius of the Earth,

1 = star-Earth horizon angle,

= apparent planet diameter measurement - angle substended

by planet disc at the spacecraft,
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z = 3xl null vector.

Star-planet angle partials:

cos = d

-2/

C ~l (sin A- cos )
isin

Apparent planet diameter partials:

R
sin 1/2 = e

__ - tan 1/28AT

For any data type which has a bias,

y = H X.+b

Y = 1.0 (6-12.17)

6.4 FILTER

After the knowledge covariance has been propagated to a measurement

time, and the observation matrices are computed, the OD filter can per-

form its function of estimating the set of solve-for parameters (non-

deterministically) and updating the knowledge covariance accordingly.
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There are two types of filters available, Kalman-Schmidt (K-S) and

weighted least squares (WLS), plus capability for a third filter, to be

established by the user. K-S is the most commonly used filter because it

treats consider parameters in a realistic fashion.

The filter updating process requires computation of several matrices.

First, the propagated estimation error (knowledge) covariance P at the

measurement event time is
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P C .,.. C
X XS xw

CT p
xs s

P = Pu

P C
v vw

T T p
C ... C P
xw vw W

where P , .. , P are the covariances of the S/C state, **, ignore para-
x w

meters, respectively, and Cxs, *.., C are the cross-covariances between

appropriate augmented parameters. The observation matrix H defined in the

previous section is

H
x

H
s

H = H
u
H
v

LHw

The measurement residual matrix J is defined as

J = HPH + R

where R is a diagonal matrix containing variances of the measurement white

noise. For example, a simultaneous 2-way/3-way range measurement would

look like

o +0
R =

2  22

where 622 is the 2-way range noise variance and 0 is the additional
3R

3-way range noise variance due to timing synchronization. For a single

star-planet angle measurement, R would be a scaler

R 2 /r2R+ =/r
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where 2 and 02 are the optical resolution and planet or body

center finding noise variances, respectively, and r is the spacecraft

range to the planet.

The updated covariance (P +) after the measurement has been

processed (and in theory after the state estimate has been updated)

is in general

+ T TP = (I- KH) P (I - KH) + KRK (6-3)

where K is the filter gain.

KALMAN-SCHMIDT

The filter gain for K-S is straightiorward

K = PHT J-

Since only estimated parameters can be updated by the OD process,

the entries of K corresponding to consider and ignore parameters

are zeroed out, that is, K = [ K 0 0 0 T The updated

covariance is then formed by Equation 6-3.

WEIGHTED LEAST SQUARES

The sequential, or recursive weighted least squares (WLS) algorithm

implemented in GODSEP is equivalent to a batch WLS filter if there is no
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process noise. Since process noise is a significant part of low thrust

analysis, the WLS filter must be used recursively, because it has 
no

batch equivalent. The sequential WLS consider filter acknowledges con-

sider parameters only in the covariance update (Eqn. 6-3) and not in the

gain matrix calculation. Therefore a set of reference covariances

for the state and solve-for parameters must be maintained at all times.

This set also represents the filter analysis as it would be in non-consider

form.

Thus, the WLS filter computation requires three operations: (1) pro-

pagation of the reference covariance to the measurement event, (2) com-

putation of the filter gain and (3) updating both the reference and

knowledge covariances.

(1) The reference covariance (P) consists of

^ Px CT S
P = [ Cxs

and is initialized at the a-priori values. Thereafter, it is

propagated from one measurement to the next by

Pk+l P k

where $ is the augmented transition matrix corresponding to the

A

x and s parameters. P is computed in parallel with the actual

knowledge covariance P.

A

(2) Given P at the measurement event, the WLS filter gain is

K PH (H PH + R)

where H = x

s
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(3) The reference covariance is updated, after measurement pro-

cessing, by

= (I-KH) P

and the knowledge covariance P is updated by Eqn. 6-3.

Thus, at measurement events, the OD filter updates the knowledge

covariance to simulate taking a tracking measurement, processing the measure-

ment in an orbit determination algorithm, estimating desired parameters and

reducing (or updating) the knowledge uncertainty to reflect this new infor-

mation about the trajectory.

6.5 GENERALIZED COVARIANCE

The function of any filtering algorithm is to process available measure-

ment information and produce a best estimate of the spacecraft state and

any parameters that are being solved-for. Best is usually defined in a sta-

tistical sense, such as the minimum variance processes used in differing forms

in the weighted least squares and Kalman-Schmidt filters. But in practice,

filter performance is dependent on how well the assumptions used in the

filter definition approximate real-world processes, because all error sources

cannot be modeled, nor can those that are modeled ever be modeled exactly.

Therefore, each filter must be evaluated not only on its ability to produce

small error covariances in the resulting estimated state, but also be as

insensitive as possible to errors in its model assumptions.

Generalized covariance error analysis is a useful tool for studying

filter sensitivity. For generalized covariance studies, two sets of know-

ledge errors are carried during the orbit-determination process. Assumed

knowledge uncertainties are those generated by the filtering algorithm
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according to the mathematical model and all the assumed errors input to

it. True knowledge uncertainties represent the effect the filtering

algorithm has on actual state estimation when the real-world error sources

are not the same as those assumed by the filter. Evaluating filter sensi-

tivity to a model assumption involves comparing the resultant effect on

assumed and true uncertainties of a modeling mismatch between the filter

and real-world uncertainties. This modeling mismatch is accomplished in

one of two ways; true a priori uncertainties may be set at levels other

than assumed levels or the true state may be augmented by a vector of ignore

parameters--parameters whose uncertainties are recognized by the true

covariance analysis, but which are completely ignored by the assumed filter

analysis.

The filter that is least sensitive to a model mismatch is determined

on the basis of two criteria. First, which filter yields the smallest true

estimation errors. Second, for which filter are the true errors most closely

approximated by the errors predicted by the filter covariance analysis. Thus,

given a mission with a specific set of model mismatches, if two different

.filters produce equivalent true errors, then the superior .filter is the

one whose assumed errors are closest to the true ones. Similarly, if the

resultant assumed errors of the two filters are equivalent, the superior

filter is the one with the least true estimation uncertainty. Generally,

qualitative judgments are required because several sets of mismatches must

be studied, and the relative performance of the filters may vary.

In error analysis, generalized covariance is a filter sensitivity

study tool that is normally available only in a simulation program. It is
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accomplished in GODSEP with a minor increase in core and computational

time compared to a full simulation and has the additional advantage of

generating ensemble true state statistics rather than a single sample 
as

in a simulation. The only disadvantage of generalized covariance is that

it uses the same linearized dynamic and observation models as the assumed

filter analysis, and can therefore not study problems that arise from

nonlinearities.

The actual operation of generalized covariance in GODSEP requires that

a standard error analysis be run first. The filter gains, associated with

the assumed knowledge uncertainties, are stored on disc or tape. Now the

error analysis with all the same measurement events is repeated. Only this

time, a-priori uncertainty levels and measurement noise are modified, and

ignore parameters are added, to the extent of desired mismodeling. At

each measurement event, Eqn. 6-3 is applied to what is now the true know-

ledge covariance using the appropriate stored filter 
gain. The true

covariance analysis thus proceeds in analogous fashion to the previous

assumed covariance analysis. Obviously, many mismodeling conditions can

be studied with the same filter by repeating the generalized covariance

analysis.

6.6 GUIDANCE

Although the knowledge covariance is modified by measurement events,

the control covariance, which represents the ensemble of actual deviations

from the desired or reference trajectory, will grow without bound. 
The

only process which will reduce the control covariance 
is a guidance event

that is, the design and execution of a trajectory correction, either
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impulsive AV or low thrust.

Low thrust guidance represents an update of the nominal thrust con-

trols (magnitude, direction and cut-off time). In terms of system cost

and efficiency, it is better to use the existing low thrust propulsion

system for guidance than to add auxiliary means, for example high thrust

chemical engines to produce impulsive Av. Of course, certain problems

inherent in low thrust propulsion, in particular terminal controllability,

may force the addition and use of an auxiliary chemical propulsion system.

In mathematical terms, given a trajectory state deviation, x =

' (to), where to is the guidance epoch, we wish to null out the effects

of 5 x by making a bias type correction Su to the nominal thrust controls.

To be efficient, the correction is applied over some finite interval

[to, tc] such that the target error b , caused by x o', at some final

time (tf) is removed. For linear analysis, we seek the guidance matrix F

such that

u = xo

The linear ensemble of thrust control corrections is then

U = E [ u T]

T (6-4)

In GODSEP, the trajectory error ensemble E [Sx SxT]is the control

covariance Pc (to). Using Pc represents a pessimistic sizing of the

thrust corrections because only the known trajectory error (not to be

confused with the knowledge error) can be removed. The known error

generally corresponds to the control error as long as Pc (to)>> Pk(to )

where Pk is the knowledge covariance.
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To compute the guidance matrix r we first compute the sensitivity

matrices

S T (tf)

V(tf,t) (tf)

x (to)

or,

S = [ f') (tf,t o) 9 (tc ,to )
I' x (t 1 0 0

V = a T(tf) (tf,tc) O (tc,t o )

3 x(tf)

where the first matrix in S and V is formed by numerical differencing

and the second two matrices (4 and 9) are obtained from transition matrices

generated by the trajectory propagation routine (Section 6.2). If variable

time of arrival is desired, the control array 6u is augmented with the

arrival time and the S matrix is augmented by * (tf), relative to

the target.

The guidance matrix can now be defined by

S w 2 ST ISW 2  ST ] V If Nu A NT (6-5.1)
-1

r= ST WT S S WT2V If NT > Nu (6-5.2)

where Nu and NT are the number of parameters in the control and target set,

respectively, and Wu and WT are diagonal weighting matrices for the control

and target parameters, respectively. The first form of r, 6-5.1, reflects

a minimum quadratic control correction and the second, 6-5.2, corresponds

to minimum quadratic target error.
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Generally, there are more control parameters than targets with the

exception of two cases: (1) terminal approach to the target where con-

trollability drops off rapidly; and (2) the application of control

constraints which effectively reduces the set of available controls.

If constraints on the control corrections are imposed, then r' mist

be suitably modified. First, the unconstrained r is computed along with

the ensemble unconstrained control corrections,

U = Pc" T (6-4) again

Each diagonal component of U, u2 , is compared against its constraint

value ( UMAX ) . If u is greater than 6 uMAX' then the appropriate

row of r is scaled by SuMAX/ u. The total control set (and guidance

matrix) is then separated into two subsets: unconstrained controls, U,)

and ri' and constrained controls, 6 12 and F2'

= = SuMAX [

The new control corrections are computed with (6-4), (actually only the

remaining unconstrained controls are computed ) the test for constraints

are made, r is modified again, and the entire process is repeated until

all constraints are met, or there are no more controls left. The guidance

corrections are executed (figuratively) at time to, that is, are uplinked

to the spacecraft, but apply over the entire guidance interval to, tc

Execution of the guidance updates causes the control covariance to

diminish from t to t whereupon it begins to grow again. Guidance accuracy
o c

is measured by how much the control covariance can be reduced at tc which

depends upon how well the thrust corrections were designed. The limiting
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accuracy of maneuver design is the knowledge error or covariance 
at to .

Thus, the post maneuver control covariance at t is the propagated

knowledge covariance (as per Eqn. 6-1) from to to tc,

+ )T t
P (tc) = (tc,to) Pk(to) (t ,t) + Q(t,to) (6-6)

In GODSEP, to denote guidance execution, P (to ) is set equal to

Pk(to). This is equivalent in effect at tc to applying Eqn. 6-6.

However, it means the value of P in the guidance interval is not valid.
c

This is a relatively minor problem compared to the reduced burden on

computational storage and logic.

+
One exception to setting Pc = Pk occurs when there are more

targets than available controls, which often happens when 
control

constraints have been activated. In this case, there will be some non-

zero target error that was not removed by the guidance corrections. This

implies that not all of P was removed. Hence, the post maneuver control

covariance must include the residual state error.

P + P + VVT] -1 + S rl1 P VT VWTl[ V + Sd

As long as no more guidance events are executed between [totc]

updating the control covariance at to is theorettically no different

than using Eqn. 6-6 at t . However, if another guidance event is scheduled

in the burn interval, say at tl, then a somewhat different logic is applied

to size the correction. It is assumed that the first guidance event between

t and t is a primary maneuver. Subsequent guidance events in this inter-

val are considered to be vernier maneuvers, representing refinements of the

thrust corrections computed in the primary maneuvers.
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For vernier maneuvers, 9 and * are redefined for the vernier burn

interval and r is computed as in Eqn. 6-5. The guidance updates are

computed using Eqn. 6-4 with the knowledge gained since the primary

(or previous vernier), that is,

E [ x1 xlT = P+(tl) - Pk(tl)

Recall from the previous discussion that P (t ) is usually the propagated
cp

knowledge from the previous guidance event.

A measure of guidance effectiveness is the estimated target error

before and after the maneuvers.

before guidance correction, E [ST ST T  = V P-(to) VT
- c o

after guidance correction, E [ST TT = V P+(t) VT .

This simple measure assumes, of course, that no further dynamic error

will occur from to to the target time tf.
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An important part of the guidance and navigation process is

the time interval from the last navigation measurement used for

guidance design to the actual time of guidance implementation

(to). The time interval (or delay) is necessary for ground pro-

cessing of all previous measurements, estimation of the S/C state,

designing the thrust updates to correct the trajectory, and

execution of the updates. Typical intervals are 3 to 15 hours,

and are usually critical only in the terminal mission phase where

trajectory controllability (with respect to thrust controls)

diminishes rapidly. This time delay is user specified for each

guidance event.

Impulsive AV guidance is very similar to low thrust except

for a zero burn interval (to = t c). The delta-velocity is treated

as if it were a control correction u, that is,

To compute C , the sensitivity matrix S is first partitioned

into position and velocity submatrices,

S = [A B

ah(tf) A =(tf)

where A and B
-''0
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If the target vector T has only two components, e.g., B*T and B.R,

then IAl I is minimized "and

S -BT (BBT)- A -BT (BB )-

If T has three components, e.g., the position vector at tf, then

[-B1 A

The computation of ensemble velocity correction, U in Equation 6-4,

follows directly. As in low thrust guidance, the pre-maneuver control

covariance P (to ) is used to size U.

U = E[AV A T ] = e c (to) T

Execution errors related to low thrust control updates are neg-

lected because they are second order effects compared to thrust error

associated with the nominal thrust profile. However, 6V execution

errors are taken into account because impulsive maneuvers often occur

during ballistic or coasting portions of the mission and can represent

a significant contribution to trajectory error. In order to compute

&V execution errors, the most probable AV is first determined by

the Hoffman-Young approximation (Reference 8). Let A, A2' A3

be the eigenvalues of the &V covariance, U, and oW be the largest

eigenvector of U, define

A = 1 + 2

B =  X1 2 + 1i 3 + 2 3

2 + [ B(1T-2)



then the probable AV is E[AV] = = AV 2

&V3

Now the 3 x 3 AV execution error covariance Q is composed of

2 2 2 2 2 2

= AV 2 2~ ' 2 Av 2 1 V3
2  -2 (6-7)

1 1 - m 2  p2 ++

exy2

=2 2 2 2 2

m Y

2 2
Q1 3 = 3 1 = V 3 [m2 " 32]

2A2 V 2 2 + A2 V32 2

Q2 2  AV 2  m +  2

=23 32 ' [2 m - ]

2 2 2 2

Q33 3 m + xy
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where ex2 2 2

r= 2  2 + 2

2

a2cre 2 = AV resolution and proportionality variances

2 = ecliptic (X-Y) pointing variance

02 = out of ecliptic (z) pointing variance.

As in low thrust guidance, the post-maneuver control covariance Pcc

(to) is set equal to the knowledge covariance Pk (to) corrupted by

the AV execution errors,

P (to) = P (t ) + 0

Pre and post maneuver target uncertainties are computed in equivalent

fashion to low thrust guidance.



90

7.0 TRAJECTORY SIMULATION - SIMSEP

The trajectory simulation mode SIMSEP has been designed to

provide deterministic analysis of ballistic and low thrust missions.

Computationally, SIMSEP imitates "real" trajectories in the presence

of a wide variety of environmental and system uncertainties. A pri-

mary objective is to deduce expected or probabalistic behavior of

the real mission by studying a relatively small subset of simulated

missions.

The purpose of this section is to discuss the key analytic

concepts in SIMSEP. This will be done in two parts: 1) by discuss-

ing the principal algorithms, and 2) by outlining the basic compu-

tational structure. Although many algorithms used in SIMSEP are

similar in function to algorithms used in TOPSEP and GODSEP, their

specific applications here warrant an extended discussion of their

underlying theories.

7.1 Program Scope and Methods

Before proceeding with a step-by-step description of the

algorithms and computational structure, it is worthwhile to compare

the essential similarities and differences between GODSEP and SIMSEP.

Unlike the error analysis mode which works exclusively with error

ensembles and a reference trajectory, the simulation mode actually

formulates many discrete examples of the "real world" or "actual"

trajectory. Each of these is propagated, in a deterministic sense,

by the same trajectory integrator, integrating the same equations of

motion. However, many variables and parameters appearing in these
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equations are subjected to random 
alterations, corresponding to

discrete uncertainties. Hence, each deterministic simulation 
of a

mission is different according 
to.the effects of the sampled 

errors.

Operationally, SIMSEP does 
not sample each error in succession

and propagate trajectories 
with just one error source 

active at a

time. Rather, all are initial-ized by 
differing amounts for each

actual trajectory. Thus the averaged effect of all 
error sources

acting in concert can be estimated 
by repeating the mission simula-

tion process a sufficient number 
of times.. This is the essence of

the Monte Carlo method and is 
the basis of the simulation approach

to determining how trajectory 
nonlinearities and uncertainties 

can

affect the G&N process.

Perhaps the best example to illustrate 
the fundamental differ-

ences between the methods used 
in GODSEP and SIMSEP is the problem

of propagating, or mapping, 
an error covariance from one 

point to

another along the reference trajectory. 
It will be recalled that

the principal method for propagating a covariance in 
GODSEP is by

the state transition matrix mapping, 
namely,

T
Pk+1 = k+l, k Pk k+l, k

where lk+l,k represents the state transition matrix and Pk and

Pk+l are covariances at tk and tk+l , respectively. When there is

dynamic process noise, an effective process noise matrix, 
Qk+l,k,

is also added, (See Section 6.2). The state. transition matrix is

generally computed simultaneously with 
the trajectory by integrating
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the variational equations. However, the variational equations are

based on linearized expansions of the differential equations of

motion and neglect all second and higher order terms. Hence, a

state transition matrix mapping of covariances must theoretically

be limited to mapping covariances within the envelope of linearity

surrounding the reference 'trajectory. Rarely is this-assumption

true at all points along an interplanetary trajectory, especially a

low thrust trajectory. Covariances propagated by this means are

subject to error whenever a region of significant trajectory non-

linearities is encountered.

On the other hand, the method for propagating a control

covariance in SIMSEP is not plagued by these effects, although it

has its own peculiar shortcomings. The SIMSEP approach to this

problem relies on the Monte Carlo method where a multitude of

sample trajectories are propagated between the two time points in

question. The trajectory state vector data at tk+l are processed

and accumulated in such a way that the covariance can be reconstructed

by standard statistical calculations. Hence, SIMSEP maps a covariance

as a statistical ensemble calculated from many data points and not as

a simple mathematical entity like GODSEP.

Therein lies the primary drawback to the Monte Carlo method and

to the use of SIMSEP for general G&N analysis. Although the Monte

Carlo method will, in theory, converge to the exact covariance, the

rate of convergence tends to be extremely slow. For accurate

statistics, inordinately large amounts of computer time are often
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necessary to perform the many trajectory propagations.

Although-both GODSEP and SIMSEP are preflight mission analysis

programs used to identify the general G&N subsystem characteristics,

they are usually used at differing phases in the development 
of an

overall systems analysis. For the purposes of a preliminary systems

design, a GODSEP analysis is the most cost effective means of evaluat-

ing the basic G&N subsystem requirements. As such, SIMSEP is generally

relegated to verifying the linear analysis results, and only in the

advent of serious nonlinearities is the simulation mode called upon

for more extensive studies.

7.2 Definitions and Concepts

The first important concept in SIMSEP and common to all MAPSEP

modes is the reference trajectory, denoted by 1 = (t). The

reference trajectory is computed under some set of "reference

integrating conditions" to satisfy desired targets at mission's end.

Moreover, XR represents a deterministic solution to the equations of

motion for the assumed dynamic and systems models. For SIMSEP, the

initial state and reference integrating conditions, i.e., ephemeris

parameters, thruster characteristics, etc., are read as input since

it is assumed that they have already been computed as output from a

TOPSEP analysis.

A second quantity important in SIMSEP and common to GODSEP is

the control error covariance, PG. Generally, an a priori control

covariance is defined at injection (or at the starting point of the

mission being studied). This matrix mathematically describes the
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distribution of real state errors relative to the initial reference

trajectory state. In SIMSEP, it is implicitly assumed that the

probability distribution of these errors is Gaussian with zero mean.

Once an a priori control has been given, it is randomly sampled to

form an error vector, S X which corresponds to a deviation of the
-A'

actual trajectory state relative to the reference. At the same

time, error sources associated with the host of other dynamical

and systems uncertainties are also sampled to create the so-called

"real world integrating conditions". For the actual trajectory

state vector, this procedure may be written as

X = r +  sA

where 6XA is a deviation obtained by sampling PG Utilizing

these integrating conditions, the actual trajectory state, X, is

propagated from point to point as a discrete example of an actual

trajectory.

The third- critical variable used in both GODSEP and SIMSEP is

the knowledge error covariance, PK. This matrix is propagated in

the error analysis from measurement to measurement where it is

systematically updated according to the filtering algorithm. In

SIMSEP, instantaneous evaluations of Pk are input at each guidance

event and are left unchanged throughout a given run since there is

Sno explicit orbit determination process modeled. However, the

knowledge covariance, like the control covariance, is sampled to

formulate an error vector. This error vector determines the error
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in the estimated state relative to the actual trajectory state, and

is used to compute an estimated state vector by

= X + e

where e is the sampled error vector from Pk If other parameters

are estimated during the orbit determination calculations, they are

included as augmentation parameters. These too are sampled in order

to formulate a set of "estimated world integrating conditions".

With each of these key quantities having'been defined, it is

worthwhile to mention why each is important in a simulation run,

The reference trajectory, for example, serves to define the mean

for all actual trajectories, as well as defining the reference target

conditions used during guidance. The actual trajectory is, of course,

the mathematical representation of the real motion and is carried

from event to event until the final target is reached. On the

other hand, the estimated trajectory is used exclusively for re-

targeting the actual trajectory back to the desired targets and is

computed only during guidance.

7.3 Guidance

One of the principal purposes of SIMSEP is the detailed exami-

nation of nonlinear trajectory effects, especially as they bear

upon the guidance problem. In this section, the fundamental concepts

underlying linear and nonlinear guidance will be presented, and the

implementation of these concepts into algorithms will be discussed.

Beforehand, a careful distinction between targeting and guidance
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must be drawn since MAPSEP has algorithms for both and since many

of the basic steps and operations are similar. Whereas a targeting

problem is solved by formulating an entire control-strategy for a

complete mission, a guidance problem assumes that a solution to 
the

targeting problem has already been found. Furthermore, the current

trajectory which is to be corrected is assumed to be in a "close

neighborhood" to the original reference solution. Hence, the con-

trol changes computed by a guidance law are expected to be small

refinements to the original controls, even in the presence of non-

linearities.

7.3.1 Linear Guidance

The linear guidance option in SIMSEP is analogous to the guid-

ance used in GODSEP except -that-it applies to a discrete trajectory

error as opposed to an ensemble of errors. For both modes, the

Slinear guidance matrix is the same. To compute a guidance matrix,

a sensitivity matrix is evaluated between the point of the guidance

event and the target about the reference trajectory. This matrix

of linear partials relates control changes to target deviations and

is used to map estimated trajectory errors, XE, into control

updates, according to the guidance laws:

1) _ . = " j_, for impulsive corrections, and

2) .Au = f j., for low thrust.

In spite of its overall simplicity and ease of implementation,
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the advantages of linear guidance are off-set somewhat by its draw-

backs. First, the trajectory error, _X, must lie within the

envelope of linearity for this to be a valid method. Whenever this

is violated, the resulting guidance correction can be invalidated.

Furthermore, a linear guidance correction is executed without itera-

tions. In fact, with this guidance there is no direct evaluation of

a control correction's effectiveness in reducing target error. Only

if the updated trajectory is propagated to the target can the result-

ing target error be determined, and even then there is no recourse

for making further corrections if the original correction is

ineffective.

7.3.2 Linear Impulsive Guidance

The essence of impulsive guidance is founded on the mapping

relations which propagate arbitrary linear deviations relative to

some known trajectory into new deviations at some later time.

Clearly, this is a property of the state transition matrix which

maps a six component state deviation, S-kX, evaluated at tk into a

new deviation, X-+l,' at tk+l, by the equation,

x = /k+l,k (7-1)

If tk+l is the target time and tk is the time of the guidance event,

then k+1,k can also map state vector changes, like an impulsive

velocity correction, into state changes at the target.

However, in most analysis the actual target conditions are
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specified in terms of target variables such as geographic coordinates,

Keplerian elements, etc., instead of X, Y,...., Z state coordinates.

Fortunately, the target variables are functions of the final trajec-

tory state and it is possible to generate a differential transforma-

tion of the form

_ = k+ (7-2)

which transforms differential coordinate changes into target variable

variations. In the above equation, 4 represents a matrix of linear

partials of the form

c (T 1 , T 2, .... Tn)
(7-3)

% (X, Y, Z, k, Y, t)k+l

where there are n-target variables, T1, T2, .... , Tn and six state

components. By substituting Eq. 7-1 into 7-2, a relation for mapping

state changes at tk into target changes at tk+l is obtained, that is,

;T =k+1, k A

Performing the indicated matrix multiplication and replacing

' k+l,k with N, the equation becomes

_T = N Sx (7-4)

where N has dimensions (n x 6).

With this background, the impulsive guidance problem can be

stated most simply as a determination of a velocity change, jV,
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which, when added to ,-k, nulls the target error, jT. Again

writing Eq. 7-4 but in a partitioned format,

GT = N(1) irk + N(2) "-k '

it is recognized that _T can be made zero by adding some appropri-

ate AV to -&v , i.e.-k

N(l) rk + N(2) ( o - + ) = 0

For the case of three-variable impulsive guidance, i.e., three

unique targets, the solution for AV is given as

_V_ = - N(2) -1 N(1) -k - k'

provided N(2) is nonsingular. Note that this can be re-written as

= -N(2)-L N(1) - (7-5a)

or = X, (7-5b)

the desired guidance law.

For the case where there are two target variables instead of

three, the problem has more controls (3-velocity components) than

end conditions and a generalized inverse which minimizes the magni-

tude of the velocity correction is used according to
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S= - N(2) N(2) N(2) -1 N(1) _r

- N( 2 )T N(2) N(2 )T1 -I k

where N(1) and N(2) are non-square matrices with dimensions (nx3).

Again this relation can be re-written as

AV = -N( 2 )T N(2) N( 2 )T N( 1)

-N(2) N(2)T (7-6a)

or = P k "  (7-6b)

Algorithms based on Eqs. 7-5a and 7-.6a.are the .basis of the

linear impulsive guidance contained in subroutine LGUID. The guid-

ance matrix, , for either the two or three variable cases, are

computed as outlined above and the state vector deviation, _ ,Xk'

is calculated as the error in the estimated trajectory state relative

to the reference, namely,

-E= E - xR,

evaluated at the guidance event.

7.3.3 Low Thrust Linear Guidance

The low thrust linear guidance law has the same format as the

impulsive law except control changes are made to the vector of low

thrust control variables, 14. Another difference is that the low

N
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thrust acceleration acts slowly to bring about state changes; hence,

the low thrust linear guidance matrix operates in an integrated

fashion over a fixed trajectory segment to redirect the motion.

Otherwise, low thrust guidance is simply an extension of the basic

methods discussed above.

The most complex part of computing low thrust corrections is

the determination of the guidance matrix, P . This matrix depends

not only on the trajectory dynamics between the maneuver point and

the target, but it also depedds on the trajectory response to con-

trol changes, i.e., controllability. As before, the first step is

to integrate the reference trajectory from the guidance point to

the target, evaluating the augmented state transition matrix. In

SIMSEP, the transition matrix is computed by integrating the vari-

ational equations as was discussed in Section 4-5. By selectively

partitioning the transition matrix, the requisite sensitivity matrices

relating state and control variable deviations to future state devia-

tions are obtained.

In terms of partitions in the augmented state transition matrix,

state deviations at the target time, tk+l' are given by

k1= k+l,k k + (7-7)

where I k+l,k is a state transition matrix as defined in Eq. 7-1

and 9 is a matrix which maps control variable deviations into

state changes at tk+l*.  u in Eq. 7-7 corresponds to a set of

thrust control biases. 1 can also be written as
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S (X, Y, Z, , , )k+(7-7.5)

('M1, 'U 2, "''' )

and is seen to be (6xm) where m is the number of controls. Follow-

ing the same line of reasoning as was given in Section 7.3.2, it is

recognized that partials of target variable variations with respect

to control variable changes are needed. Hence, Eq. 7-7 is multiplied

by the transformation matrix 4 (See Eq. 7-3) to obtain,

ST = ~\ f k+l,k --Xk + -19 u. (7-8)

Therefore, the guidance problem is reduced to finding a Au which

when added to iu will make ST = 0. For convenience, it is assumed

that Su is either zero or that it can be solved-for during the orbit

determination; thus permitting Eq. 7-8 to be re-written as

S '9 AK + k -k =0. (7-9)

For the problem where the number of controls (m) equals the number

of targets (n) and the matrix ' has an inverse, the solution for

Au in Eq. 7-9 is

-i

S= 1 ck+1,k X (7-10)

where S XEis the deviation of the estimated state vector relative

to the reference at the guidance event. From Eq. 7-10 it is easy

to see that the desired guidance matrix for this particular case

is given as
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i" = - k+1,k '

and is a (6x6) matrix.

The problem is complicated somewhat when the number of targets

is less than the number of controls. In this case, a generalized,

or pseudo-, inverse matrix operation is used, and the transformation

matrix I does not drop out. Nevertheless, a solution is obtained

by determining the d A that makes ST = 0. Letting A e 8 and

B = k+l,k in Eq. 7-9, a particular solution (out of the

infinity of solutions) is given as

Av = -A TT1 $ (7-11)

This particular choice of A_. also minimizes the magnitude of the

control change (See Section 5.3). Therefore, the desired guidance

law can be written as

-I

where =  - AT  AAT1 B.

As before, the computational steps described here are imple-

mented in LGUID.

7.3.4 Nonlinear Guidance

Nonlinear guidance parallels in many respects a targeting

problem where an iterative, linear algorithm is used to determine

control changes. The primary difference is that the trajectory is
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assumed to be reasonably close to the reference. By reasonable, it

is meant to imply that the algorithm should be able to redirect the

s/c motion to the designated target by making a few iterations (three

or four). In practice, a real trajectory can deviate widely from

the reference and thereby require as many as eight to ten iterations

before the guidance algorithm is able to compensate. For situations

where convergence is not achieved after many iterations, the guidance

is said to be divergent. The real criterion for qualifying a maneuver

as divergent is somewhat subjective and established by the analyst.

In some cases, an extremely slow rate of convergence on the part of

the linear correction scheme can be attributed to non-adaptive itera-

tion logic.

-Mathemati-cally, divergence implies that the real world integrat-

ing conditions acted in such a way that the guidance algorithm was

unable to rectify the motion. Physically, divergence suggests that

something in the dynamics or s/c system has been mismodeled, or under-

designed, and that it has interactions with the other systems 
to cause

wide, usually nonlinear, deviations from the reference mission. From

the G&N point of view, it is these missions that are often of the

greatest interest. They identify potential problems either in the

baseline configuration or with the navigation and operational proce-

dures. In many instances, divergence in the guidance can be traced

to some well-understood phenomena, e.g., controllability, trajectory

non-linearities, suboptimal schedule of guidance events, etc., but

a clear identification and resolution of these problems in terms of
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changes to the system design and/or operational procedures may not

be so straightforward.

The basic computational steps taken in a single iteration are

as follows: First, an estimate of the actual state vector and the

corresponding estimated integrating conditions are obtained from

the simulated orbit determination logic. The estimated state is

integrated to generate the estimated trajectory between the guid-

ance point and the target. At the targeted stopping conditions,

an estimated target error is computed by

Tr = T T
-R -E

where T and T are the target variables on the estimated and refer-
--E -R

ence trajectories, respectively. Next, a sensitivity matrix, S, of

target variations with respect to control variations is computed

about the estimated trajectory according to the matrix relation,

S = e

where 1 is the state to target transformation defined in Eq. 7-3

and where 8 is that partition in the augmented state transition

matrix which maps control changes into state variations (Eq. 7-7.5).

The matrix S has the format,

S(T I T2  T)
S , , .... 2 n

3 (ul, u2 ..., U m

and has dimensions (nxm), where n is the number of targets and m
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the number of controls. With S it is possible to relate control

changes at the maneuver to target variable changes according to

A = S A u. (7-12)

If the matrix S is square, i.e., the number of controls and

targets are equal, then the solution to (7-12) requires only a

single matrix inversion, namely,

a = S- 1 AT. (7-13)

However, in most practical cases, S is a nonsquare matrix (m>n)

and a generalized inversion must be used, i.e.

-1

A = S [SST 1 AT.. (7-14)

Note that Eqs. (7-13) and (7-14) again assume the form of a linear

guidance relation Au = AT.

Once AA has been determined, the updated controls are used to

generate a new estimated trajectory to see if the target errors have

decreased. This overall process is repeated until the target errors

are made less than some specified tolerances, or until a maximum

number of allowable iterations has occurred. In SIMSEP, the prin-

cipal measure of target error is given by a so-called quadratic error

function defined by

h = &T () 2t

TTOL(j)

where fT(j) is the jth component of the target error vector and
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TTOL(j) is the jth component of a vector of target error toler-

ances. Convergence occurs in the nonlinear guidance whenever Q is

made less than one.

Guidance divergence is said to have occurred if the quadratic

error function is greater than the backup convergence criterion

(A0K) after iterating a maximum number of times (NMAX). Divergence

also occurs if the quadratic error function increases on three

successive predicted corrections. As far as the Monte Carlo mission

currently being executed, divergence is considered to be catastrophic,

and the mission is ended. As a backup, weak convergence occurs if

strong convergence fails to be satisfied but Q is less than A0K.

In this way, the nonlinear guidance algorithm can be tolerant of

"near misses" without bringing the mission to a halt.

Another feature included in the nonlinear guidance logic is

the ability to weight certain low thrust controls more than others.

This permits the user an added flexibility whereby he can effect a

normalization of disparities in the units associated with controls.

In addition, the user has the option to arbitrarily weight some

controls more heavily, based upon knowledge and experience gained

during the trajectory targeting process.

Algorithms based on the computational steps outlined above are

implemented in NLGUID. Both delta-velocity maneuvers and low thrust

corrections are handled by essentially the same logic with Au in
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Eqs. (7-13) and (7-14) being a velocity update for impulsive guid-

ance.

7.4 Simulated Orbit Determination

SIMSEP, in the strictest sense of the word, is not a complete

"simulation" in that an explicit orbit determination process is

not included in .the computational algorithms. The problem of

estimating a state vector is done by sampling a knowledge covariance

in much the same way as it samples a control covariance or an ephem-

eris error covariance. Simply stated, an augmented knowledge

covariance is sampled to obtain an error in the estimated state

vector, g, relative to the actual trajectory state, X. Therefore,

the estimated state vector is given by

X = X + e-e A

Likewise, parameters which have been augmented to the state and

estimated during the orbit determination process are also computed.

Typically, the knowledge error covariances which are read as

input to SIMSEP have been computed in an equivalent GODSEP run,

they are equivalent in the sense that the same trajectory and

sequence of guidance events are evaluated. With this procedure,

there is an added advantage of permitting a direct comparison of

guidance results computed in GODSEP and SIMSEP and their dependen-

cies on the same state estimation results.

There are several reasons why an explicit orbit determination

capability has not been included in SIMSEP. Primarily, the



109

estimation process is not as subject to trajectory nonlinearities

as is the guidance process. This is because the estimation errors

are generally small and well within the envelope of linearity. In

addition, this method of simulating orbit determination minimizes

the computational complexity of the program, while at the same time

representing a cost effective means of performing an effective state

estimation.

7.5 Thrust Process Noise

Digressing briefly to discuss the actual trajectory again,

there is one very important process related to the generation of a

real trajectory that is either ignored or modeled by an effective

process in the other modes. This is the time-correlated thrust

noise. These independent stochastic processes corrupt the commanded

thrust controls, i.e., thrust magnitude, cone and clock angles, as

small time-correlated perturbations. Each stochastic parameter is

modeled in SIMSEP as a Gauss-Markov sequence which is computed during

the actual trajectory integration. At time point tk+l' the vector

--k+l of stochastic parameters is given by

A=A -16-k + W-k+1

where Ik has been evaluated at tk -  k is assumed to remain constant

over the interval At = tk+l -tk, with its effect being determined by

the coefficient matrix, A.
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-At/T 1

e e

A = e t 2

where rl 2' ."" rn are correlation times associated with

each corresponding stochastic parameter. Wk+l is a vector of white

noise terms which have statistics dictated by the requirement that

the process remain stationary; namely

2 -2 At/Tj 2
- (l-e )
Wj

2 th

where yutj is the variance associated with the jth component of

the k+ vector. During the integration, + is evaluated at
-=-k+l - l

the start, the half-interval, and the end of a normal integration

step.

7.6 Guidance Execution Errors

Once that a guidance correction has been formulated, the

execution of that correction must be performed to affect the actual

trajectory. The commanded correction computed by the guidance is

an idealized set of control changes which are invariably corrupted

by execution errors. For a low thrust control change, the executions

errors are actually built into the thrust process through the thrust



biases and the dynamic process noise. However, for an impulsive

maneuver, an explicit set of logic to corrupt the commanded delta-

velocity change must be implemented.

In general there are three basic execution errors which are

modeled for impulsive maneuvers: 1) pointing, 2) resolution,

and 3) proportionality. "Given the commanded delta-velocity vector,

AV , in its heliocentric representation the in-and-out of the

ecliptic plane angles are determined as,

-1
D= tan ( aV c (2) / AV (3))

-1
= sin ( AVc(3)/ IVl ).

Specified pointing angle errors are sampled to formulate changes

in the commanded angles (gS' andS# ) to simulate orientation errors for

the actual delta-velocity, A V. Likewise, errors specified as

proportional to the maneuver magnitude, SP , and as a minimum meas-

urable resolution of a maneuver magnitude, r, are also sampled and

added to the commanded correction. The actual velocity change is given as

AI - I AV + + r

for the actual velocity magnitude. The actual velocity vector is

given as

hVA(1) = I AV cos(d+ d ) cos ( + )

AVA( 2 ) = I VAJ sin(+ So) cos (+

hVA(3) = I V sin(e+S )
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APPENDIX 1.

9.1 Conic Equations For Position And Velocity In Elliptical

And Hyperbolic Orbits

Given: r , v, t and v
--O -0 O

Find: r and v at time t.

From the initial conditions we can find the inverse semi-major

axis

1 2 o
a r o

The mean angular motion

n= a

and relationships for the eccentricity and eccentric anomaly for

elliptical orbits (a>o)

r v
-o -o

e * sin E =

r v
e - cos E = - 1

o 1I

or for hyperbolic orbits (a<o)

r * v
-o -o

e sinh Ho=

r v
e * cosh H =  0 0 -1

o 
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To find the position and velocity along the conic orbit. Keplers

equation must be solved for the change in eccentric anomaly.

Newton's method is used to solve the equation iteratively. Let

Newton's method be given in the form

f(x k)

Xkfl = xk f'(xk).

Then for elliptical orbits

x = E - E
o

f(x) = x + e-sin Eo (1 - cos x) - ecos Eo sin x - n (t-to)

and for hyperbolic orbits

x = exp (H - H )
o x

f(x) = ! e'exp(H o ) -x + e-exp(-Ho)x+l - In(x+l) - n(t-to )

The position and velocity at time t in elliptical orbits is given by

r =I, - - 1 - cos(E-Eo} r + sin(E-Eo
0

- e(sin E - sin E ) v

v =  - sin (E-E) r + 1 a1 - cos (E-Eo o

and for a hyperbolic orbit

r = 1 - [ cosh (H-H)- r + 1
So-o n

(e*(sinh) H-sinh Ho) - sinh (H-H)} v

v = T sinh (H-Ho r +{ - a1 cosh (H-H) -i]
- r r r 0 0
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APPENDIX 2

9.2 A Generalized 4th Order Runge-Kutta Algorithm With

Runge's Coefficients For A Matrix System Of First Order Differential

Equations.

The 4th Order Runge-Kutta formula for numerically integrating

first order Differential Equations of the form

y' = f (x,y)

is
hk

Yk+l = Y +  (f + 2f +2 f + f) (

where h is the stepsize, x is the independent variable, y is the

dependent variable and

fl = f'(xk'Yk)

hk  hk.fl

f2 = f ' (Xk +  k 2

k hk f2
f = f' ( + ' Yk +

f = f ' (Xk + hk' Yk + hk f 3)

To generalize these equations for an mxn Matrix system of

first order diffecential equations, write equation (1) as

h

yk+1 (i
j) = k (i,j) + 6- f1 (i,j) + 2*f2 (i,j) + 2*f3(i,j) +

f4(iji)]
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and this can be written as

y+l = Y + ( F + 2 F2  - F + F
k+1 k 6 1 2 3 4

where

F = F' (xk9 Yk)

y hk
F2  = Fxk + 2 k 2 1

hk h
F 3  = F' (xk + Yk 2 F2

F4 = F'(x + k' Yk + hk 3)
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APPENDIX 3

9.3 Newton's 3rd Order Divided Difference Interpolation

Polynomial.

Given: (X1, y 1 ), (x 2 , y 2 ), (x 3 , y 3 ) and (x 4 , y4 )

Find: A third Order Polynomial that fits the given points

Construct the following table

Xl Yl

Ix 2 , xl]

x2 Y2 [x 3 ' x 2 ' xl

[x 3 ' x 2  [x 4 , x 3 ' x 2 , x1l

x3 Y3 Ix 4' x 3 ,' x 2 1
x 4 ' x 3 ]

x4- Y4

where

x Yi+l-Yi , i = 1,2,3
i+1 i+l-xi.

S=x+ 2 xj+1  - [x+ 1xj] , j = 1,2
Lj+2' j+j' Xj x+2 - xj

xIk+3',xk+2,x+ll- [xk+2",k 1,xkI Xk+ 3 'Xk+2,Xk+l'xk] Xk+ 3 - xk

k= 1
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Newton's 3rd Order Divided Difference Interpolation Polynomial

has the following form,

y(x) = y1 +(x-x 1) [x 2 ,x1 ] + (x-xl)(x-x2 ).[ x3 ,x2 ,x1 +

(x-x1) (x--X2). (x-x3 ) [ x4 ,x3 x2 ,x11

while a 3rd Order Polynomial can be written

y(x) = ax3 + bx2 + cx + d

To find a,b,c and d, the coefficients of the x terms in the Newton's

Divided Difference Polynomial can be equated to a,b,c and d, such

that

a = x4 , x 3 , x 2 , x 1 1

b = - (x3 , x2 , x 1)-a + [x 3 , x2 , X1

c = -(X3 , x2 + x3 , x2 ,xl) a - (x2+x1) [x 3 ,x2 ,x + x2

d -(xl,x 2 ,X3)-a + x1 x2 [x 3,x2,xl - x1 [x2 ,x11+ Y

Now a third order polynominal can be fitted to the four points and

y can be determined from a given x or a maximum or minimum can

be found from the following values of x,

b•
-b +b 2 -3ac

x =  3a
3a is minimum

and
-b - b2 - 3ac

3a
is maximum
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APPENDIX 4

9.4 Analytic Expressions for Terms in the FA Matrix

In Section 4.5 it was shown that the augmented state transition matrix,

OA' is computed by integrating the matrix differential 
equation,

$A = FA OA

In order to efficiently integrate this expression, it is necessary to have

analytic representations for the individual elements of FA.

FA has been identified in equation 4-6 as a matrix of first order

partial derivatives obtained by expanding the equations of motion. In

concise symbolism, FA may be written as,

FA = fA

2 A

where fA was defined in equation 4-5 and XEA is the augmented dynamic state.

For an analysis where covariances are propagated by the state transition

matrix, i.e., the STM mode, the (maximum)component vectors of A are

defined as:

r S/C position vector

v S/C velocity vector

x = u = thrust control vector

J2 harmonic coefficient

PP Earth gravitational constant

solar gravitational constants
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and the corresponding FA matrix, in partitioned format, is

33 O 66 g31 63 k31 61 d31 61 [31 61

to 016 [O]33 [0131 10131 [0131

FA

L01 16  0O113  0 0 0

o]16 1O13 0 0 0

o ]16 [0]13 o0 0
- (12x12)

where the subscripts refer to the dimensions of the appropriate partitions.

When the covariances are propagated by integrating the covariance differen-

tial equation (see Section 4.6) in the PDOT mode, the augmented dynamic state

vector is defined as

r s/c position vector

x v = s/c velocity vector

u constant thrust controls

w time-varying thrust parameters (6x1)

and FA in this case is given as

FA = 33 0 66 63 n 66

[0 0 136 [0] 33 [0136

[0 0]66 [0]63 [h] 66

(15x15)



121

In either STM or PDOT mode, the fully augmented state, as used by

GODSEP, may also include measurement parameters. However, the terms

appearing in FA corresponding to measurement parameters are zero because

they do not affect the dynamic process.

Specific matrices in FA are defined as follows:

f33 = partials of the s/c acceleration vector w.r.t. position

components = .a/ar ,

g33 = partials of the s/c acceleration vector w.r.t. the thrust

controls = Oa/au,

k31 = partials of S/C acceleration vector w.r.t. J2 in the gravitational

potential function = a/ J2,

d31 partials of the s/c acceleration vector w.r.t. the gravitational

constant of the Earth = Oa/9p

m31 = partials of the s/c acceleration vector w.r.t. the solar

gravitational constant = aalas

n3 6  = partials of the s/c acceleration vector w.r.t. the time-varying

thrust parameters = Oa/w , and

h66 partials of the time derivative of the time-varying thrust parameters
w.r.t. the time-varying parameters = oa /aw

As noted from its definition, the elements of the f33 matrix are evaluated

by differentiating components of the S/C acceleration vector, a, with

respect to S/C coordinates, i.e.

f -
33 r
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where a is the sum of the n-body gravitational acceleration, & ,

and the acceleration due to planetary oblateness, aJ2. The partials

of & with respect to r are the components of the so-called gravity

gradient matrix and are well-known, e.g., see Battin (Reference 4).

In terms of S/C position vectors relative to gravitating bodies, r ,

the gravity gradient matrix is

3 /r = 3 [9 T - r.2 133 i/r5

with the summation being performed for all bodies. In this equation,

/i' is the gravitational constant of the i
t h body, and 133 is a

(3x3) identity matrix.

The second factor comprising f33 is obtained by differentiat-

ing the perturbing acceleration vector, AJ2 , due to the nonspherical

mass distribution in the primary. Differentiating each acceleration

component with respect to x, y, and z generates a 3x3 matrix which is

directly added to the a /ar matrix, evaluated above. The resulting

matrix is given as

x2  -U xy $ xzT

aJ2

S=equatorial xyS y S -U yzT

xzT yzT z2T-3U

where
2

15 J2 R eq 7 z 2

r r
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15 J2 R eq 7 z2
-2 3 - - ) , and

r r

R2

3 J2 Ij R eq 5 z 22 r 5 1 - j.
r r

This matrix must be rotated into an ecliptic representation for use

in MAPSEP. This is accomplished by pre- and post-multiplication by

the standard rotation matrix, E, which depends on the obliquity of

the ecliptic.

f J2 1QAJ2 T
] r ecliptic E equatorial

equatorial

The (3x1) k matrix is the matrix of partials which appear in the

variational equations and reflects how variations in the magnitude of

J2 affect the S/C acceleration a. This matrix is given by

0

0

0

J2  ax/Jx 2

a /Jy 2

a /Jz 2

where ax, a y and az are evaluated acceleration components given relative

to the ecliptic coordinate system.
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The 3x3 g matrix is given by

where A is the transformation matrix from spacecraft cartesian to inertial

coordinates (Section 4.1) and -coordinates (Section 4.1) and transforms thrust controls to spacecraft

coordinates.

_u x a' -a' sin (yaw) cos (pitch)

ay 0 a' cos (yaw)

a -a a' sin (yaw) sin (pitch)

for the pitch/yaw system, with a' = thrust acceleration in spacecraft

coordinates, and

- ax -a' -a sinb cosV• x y

a' a' -a sinS siny x

a' 0 a' cosz

for the orbit plane system.
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The 3x1 d vector is

d = _R
R3

The 3x1 m vector is

m Os - 3
r

The 3x6  n matrix is

The 6x6  h matrix is

0 ... 0

_; 1
h 0 0 "

0 ... 0

where T, ..., 6 are process noise correlation times.



Page 123-D has been deleted.
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APPENDIX 5

9.5 Tug Multiple-Impulse Orbit Transfer

When the initial condition controls (rp, ra, i,

w, f) are applied to TOPSEP, the reference parking orbit

will change from iteration to iteration. In fact, it is pos-

sible that the parking orbit characteristic of the last iteration

may not be attainable directly from an Earth based launch within

realistic launch constraints. Therefore, it becomes necessary to

consider the interface between the SEP S/C and the launch vehicle

in order to predict the "cost" of achieving the reference parking

orbit. The cost may be estimated indirectly by determining the

launch vehicle fuel budget to transfer the SEP S/C from some nominal

inner parking orbit to the other reference parking orbit. If the

inclination of the inner parking orbit is realistically constrained,

an orbit plane change may be necessary to complete the transfer. As

the angle of the plane change increases the estimated cost of the

orbit transfer will increase dramatically. The estimated cost may

then be used to distinguish between acceptable and unacceptable

outer parking orbits while simultaneously sizing the fuel expenditure

for presently conceived or operational launch vehicles (or intermediate

stages).

The launch vehicle simplistically modeled in TOPSEP is the

expendable space tug*. Initially, the tug is in a circular inner

Although the launch vehicle is referred to as the space tug, in the
remaining discussion, the specific vehicle is inconsequential to the
sizing of the fuel budget (i.e., the vehicle may be a trans-stage,
Burner II, Centaur, etc.)
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inner parking orbit whose equatorial inclination is constrained

due to bounds on the booster launch azimuth. The tug then

performs the transfer to the outer parking orbit, which is the

orbit specified by the initial state in the $TRAJ namelist.

The tug's path from the inner parking orbit to the outer parking

orbit will be a coplanar Holmann transfer if the required

equatorial inclination does not violate the launch azimuth

constraints. Otherwise, the tug follows a modified Hohmann

transfer (i.e., a regular Hohmann transfer in the inner orbit

plane followed by a plane change and circularization at the

line of intersection with the outer orbit plane). The

equatorial inclination of this transfer orbit is either the

maximum or minimum inclination bound such that the required

plane change is a minimum. For the coplanar transfer the

ascending node of the inner orbit is fixed; thus, the launch

azimuth may be computed explicitly and tested for a constraint

violation. For the plane change transfer the launch azimuth

is fixed, and the inner parking orbit is uniquely determined

when the minimum plane change condition is enforced.

Figure 9-2 illustrates the selection of the'inner orbit

normal vector which minimizes the plane change for the transfer

to the outer parking orbit.
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z normal vector of
ec inner orbit mini-

mizing plane
change,

locus of normal e_
vectors for orbits
with minimum

equatorial inclination normal vector of
outer parking

\ orbit

ec

locus of normal
vectors for orbits
with maximum

equatorial inclination

x
ec

Figure 9-2 Selection of the Normal Vector for the Inner

Orbit Which Minimizes the Plane Change

The larger cone in the figure represents the locus of normal vectors for

all possible inner orbits having the maximum equatorial inclination

allowed by the launch azimuth constraints (AZMIN and AZMAX in $TOPSEP).

The smaller cone is the locus of normal vectors for orbits having the

minimum equatorial inclination, which in general will be equal to the

latitude of the Kennedy Space Center (28.608 deg). If the normal vector

of the outer parking orbit falls between the two cones, the parking

orbits are assumed coplanar. If the normal vector falls outside of this

region, the inner parking orbit is characterized as follows:
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(1) the inner orbit is inclined to the outer orbit by the

angle 0 where P is the minimum angle between

the normal vector of the outer orbit and the nearest

cone.

(2) the normal vector of the inner orbit becomes the

projection of the outer orbit normal vector on the

nearest cone.

For both the Hohmann and modified Hohmann transfers two

distinguishable velocity increments or Av's will occur. Figure 9-3

illustrates the relative positions where these maneuvers are executed

for the general case (ra specified by RP1 in $TOPSEP).

z
ec

intersection
of orbit
planes

a ,
outer parkin
orbit

\ / Yec

\ . I

L.O . I
transfer I
orbit orbit X flout r / A b

inner park
ing orbit

Figure 9-3 The Tug Z-Impulse Orbit Transfer
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The Hohmann transfer orbit is oriented so that the line of apsides

corresponds to the intersection of the two parking orbits planes.

The apoapsis radius of the transfer orbit is chosen to be the

larger of the two radii to the outer parking orbit along the inter-

section. The first impulse Av occurs at periapsis; the second
-a

impulse Avb occurs at apoapsis and provides a velocity increment

to shape the orbit and to change orbit planes if necessary. If both

parking orbits are coplanar the line of intersection becomes ambigious.

For this case, it is assumed that the outer orbit and the transfer

orbit share the same line of apsides. Thus rb will correspond to

the apoapsis vector of the outer parking orbit.

The magnitudes of the velocity increments Av a and Av b for

the general case are computed as follows.

E+ 2 pErb

E ra +

(Vb) = rb(ra + rb) (Vb) =E b

where a is the semi-major axis of the outer parking orbit.

Since the first impulse does not initiate a plane change and since the

velocity vectors before and after the impulse are aligned

va = (V)+ -(V)
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va a+ rb -1

The second impulse may perform a plane change through the angle .

Thus, by applying the law of cosines

Avb = (Vb+)2 + (b) 2  - 2(vb+) ( b ) cos

If = O, rb is the apoapsis radius of the outer parking orbit (rao

and the above equation reduces to

Av b = (vb) - (Vb)

2/E r r
A EPo a

b r r +r r + r
ao ao po a ao

where rpo is the periapsis radius of the outer parking orbit.

Once Zva and v have been calculated the fuel

budget for the space tug may be computed. The tug's dry weight (Wtug),

the propellent weight (Wfuel)MAX, and the tug's specific impulse (Isp)

are specified in the input namelist (TUGWT, TGFUEL, and TUGISP in

$TOPSEP). The fuel required for the first maneuver (Wfuel)a is then

f(W a = 1 - sp afuel a I tot
sp/
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where

W =w +(W fe
tot tug fuel max sep

W is the weight of the SEP vehicle and g is the gravitational
sep

constant. It follows that the fuel for the second maneuver is

fugI tot fuel(Wfl)b= 1 exp sp  )

The required fuel budget to perform the orbit transfers

is then

fuel fuel a fuel)b
tot



Page 136 has been deleted.
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APPENDIX 6

9.6 Control Weighting Schemes for TOPSEP

Various weighting schemes are provided to allow the MAPSEP

user flexibility in scaling controls in the TOPSEP mode (Chapter 5).

The purpose of these schemes is to alter the contours of constant

cost and constant target error in the control space so that the

projected gradient algorithm may converge more readily. Convergence

problems occur most often when elements of the control vector differ

in units. For example, there may be considerable difficulty in

finding a converged solution when thrusting angles (cone or clock)

are selected as controls in addition to thrust phase times. Whereas

the internal units for the angles and times are radians and seconds

respectively, the corresponding elements of the sensitivity matrix

may vary by several orders of magnitude. That is, the sensitivity

of the targets to a change of one radian in thrusting angle is many

orders of magnitude greater than the sensitivity of the targets to

a change of one second in thrust phase duration. In the example

just described one would find that the PGM algorithm would compute

a control correction which would try to eliminate the target errors

by large changes in the thrusting angles and very small changes in

thrust duration. Unfortunately, large control changes are often

invalid in the very nonlinear control space associated with low

thrust trajectories. To alleviate this problem, the normalized

control weighting scheme has been devised. The diagonal elements

of the control weighting matrix are defined as

[W = 1
ul 33 UjI
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Application of this weighting matrix to the controls determines a

sensitivity matrix whose elements are roughly the same order of

magnitude. Thus, the removal of the target error is spread evenly

among the selected controls rather than among only a few. Hopefully

all the control changes will be small enough to be valid in the

nonlinear control space.

Another type of convergence problem may occur. Sometimes

elements of the sensitivity matrix vary by orders of magnitude

even though the controls are all of the same units. For example,

target parameters are much more sensitive to changes in thrusting

angles early in the trajectory than they are to changes in these

angles late in a trajectory. If the controls are not scaled, the

PGM algorithm computes a control correction where changes in

thrusting angles during early phases are unacceptably large and

changes to the angles during later phases are undetectable. The

following weighting schemes have been devised to spread the removal

of target error more evenly among the selected controls.

a) Sensitivity weighting

[u jj = Max S , i = 1, N

b) Combined sensitivity, target error, and control weighting

N

W = i I Sij I*S e.

1uj i=l
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c) Gradient weighting

N

G = 2 * S.. e.
j 1

i=l

1G.

d) Averaged gradient and control weighting

0.1

W = (10 u + Gj

2 1 2Uj +

where G is defined in c.
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APPENDIX 7

9.7 Integrated State Transition Matrices for Computing the

Targeting Sensitivity Matrix

Within the three basic modes of MAPSEP, trajectory guidance

and/or retargeting represent one of the primary computational

problems worked in the program. Whereas the logic controlling

these calculations is, in general, straightforward and easily

understood, the actual execution remains as one of the more costly

computational operations to be performed. This is especially true

in TOPSEP and SIMSEP where targeting over long trajectory arcs is

done repeatly. In order to minimize computational expenses, an

algorithm which uses state transition matrices integrated with

the trajectory has been implemented and is used exclusively in

GODSEP and SIMSEP for computing the targeting sensitivity matrix.

In TOPSEP, the user has the option to use either this or the more

expensive, but equivalent, numerical differencing algorithm.

The targeting sensitivity matrix, S, is a matrix of linear

partials relating variations in the control variables, Au, to

variations in the targets, A T, according to

AT = s .

Looking at the targeting sensitivity matrix in more detail, it is

seen to be of the form,

(T 1 , T 2' . . . . , T n )
S =

S(ul, u 2 , . . . . , u m )

where the T's are selected target variables and the u's are controls.
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Typical target variables include Xf, Yf, Zf, R , , etc. which are

all evaluated about the final trajectory state. Typical low thrust

control variables are the thrust phase stop time, thruster throttling,

and thrust direction coefficients in the same or different thrust

control phases.

To provide a conceptual understanding of how S is evaluated

from trajectory information generated in the augmented state transi-

tion matrix, it is convenient to consider the trajectory segment

depicted below where time points k,

n+2

n+l K+3 f

k+2

kk+l

Reference Trajectory

k + 1, .... and f are shown bounding thrust control phases n, n + 1,

etc. In the figure, time point f denotes the target time and represents

the trajectory stopping condition. Considering a specific thrust con-

trol phase, say n, it is recalled from Section 4-5 that the augmented

state transition matrix generates partials of state variations of time

k + 1 with respect to state changes at k and control variable changes

interior to thrust phase n. In particular, these partials are contained

in the I and @u partitions of the augmented matrix and may be sym-

bolically written as,
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S (x, y, z, Vx' y Vz)k + I ,

(x, y, z, vx, x , Vz)k

(x, y, z, x Vy' z ) k + .

and (u 1 , u2 , u 3 , u4 )

The u's correspond to the phase stop time, throttling, pitch (or

in-plane) angle, and yaw (or out-of-plane) angle for the nth phase.

Other thrust policy coefficients are excluded from this treatment

since their partials must be obtained by numerical differencing .

If u2 (for example) in thrust control phase n is specified as

an active control for the targeting event being considered, then the

action of u2 on the state vector at f is computed by pre-multiplying

the .appropriate column from @ (n) for phase n by all intervening

's, i.e.

f=kk

u2 (n) If, k+3 Ik+3, k+2 1k+2, k+l u2 (n)

A

Hence, an augmented @u, say @u, can be constructed by storing and

pre-multiplying appropriate columns from the @ 's as they are computed

during trajectory integration. The resulting 2u gives the partials of

the final state with respect to the active controls occurring in the

various thrust phases between k and f and may be written as

A (x, y, z, v x ' v y Vz) f

u (u, u , ..... , um
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The final component necessary to compute the requisite S matrix

is the evaluation of target variable partials with respect to the

final state, X . This is most expediently done by a numerical dif-

ferencing algorithm to generate the differential'point transformation

matrix, * . The matrix can be written as

(T 1 , T2 ,  ... , TN)

= 2 (x, y, z, vx y, vz) f

Now S is seen to be

S = 9

In TOPSEP where initial state conditions are also permitted as

control variables, it is necessary to extend the above procedure but

not the computational method. For this special case, only the chained

's are needed to compute the partials of final state with respect

to changes in the state at k. Clearly, selected columns from If,k

which is defined by

ff,k If,k+3 1k+3, k+2 1k+2, k+l Tk+l, k

A
may be augmented to the previously defined @ to give the requisite

targeting sensitivity matrix to be used by TOPSEP.
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APPENDIX 8

9.8 The Shadow Model

Passage into the shadow of the Earth and the occultation time

are especially important considerations for Earth orbital SEP missions.

The occultation of the sun, which has the effect on the S/C of an

imposed coast period, restricts the mission thrusting time. Additionally,

thruster efficiency is reduced due to cyclical cooling and warm-up

periods for the thruster subsystem. In this appendix, the MAPSEP

shadow model is developed. A general technique for determining shadow

entrance and exit times is reviewed (Reference 10) and the thruster

warm-up model is discussed.

The analysis of eclipse times is conveniently simplified by the

following assumptions:

1. No flattening of the Earth;

2. No shift of the Earth in its orbit during occultation

of the sun;

3. No umbra and penumbra effects (cylindrical shadow);

4. No orbital changes due to thrust between the time the

shadow computations are completed and the predicted time

of shadow entrance.

The error which is introducted by the latter assumption is minimized by

forcing the shadow computations to occur immediately preceding the

estimated time of shadow entrance. This is in fact the process enforced

within the program trajectory propagator. For additional information

concerning implementation of the shadow model, refer to subroutine PATH

in the Program Manual.
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The preceding assumptions fix the orbital geometry in the ecliptic

reference frame so that it is a simple matter to determine whether the

orbit intersects the cylindrical shadow. Once it has been established

that an intersection exists, a quartic equation in the cosine of the

entrance and exit true anomalies may be formulated. The corresponding

shadow entrance and exit times may be computed using Kepler's equation.

The elliptical orbit is completely defined as to size and orienta-

tion by the classical orbital elements,

a, e, i, , , f

or equivalently

a, e, P, Q, f

A A

where P and Q are the unit position vector and unit velocity vector

respectively at the point of periapsis. In terms of i, , w the

unit vectors may be defined as

cos w - cos Q -sin" * sing - cos i

P = cos w * sint +sin w cos - cos i 9.8.1

sin w • sin

and

-sin w cos -cosw * sin ~ * cos i

Q -sin w sin +cos , cos R cos i 9.8.2

cosw * sin i
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If the orbit is circular, P is arbitrarily defined as the unitary node

vector in the ecliptic reference .frame. For the special case when the

A
orbit is circular and in the ecliptic plane, P is defined as a unit

vector in the X-direction.

It is not necessary that the orbit be explicitly defined by the

complete set of orbital elements before testing the occultation, however.

The following coarse test can be made to determine if the orbit which is

A A

partially defined by the elements a, e, and N intersects the shadow. N

A A A

is simply the unitary orbit normal vector (i.e., N = P x Q). The objec-

tive of this test is to eliminate further shadow computations if the

orientation of the orbital plane is such that it is impossible for any

ellipse of size, a, and of shape, e, to intersect the shadow.

Certainly, if the point of periapsis, r , does not fall within the

A
shadow given any orientation of P in the orbit plane, then occultation -

of the sun cannot occur. The geometric relationships are obtained from

Figure 9.8.1.

Orbital Plane

ntrance A
S, anti-sun

A _ vector

A Shadow Envelope

Figure 9.8.1. Orbit Geometry
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Consider the angle U (See Figure 9.8.2) which is defined

A A

sina = N * S 9.8.3

and the critical angle a cr which is defined

sin acr = R /rp 9.8.4

If

Isin I > Isint cr ' 9.8.5

then no intersection can possibly exist between the orbit and the 
shadow.

However, if the relationship in equation 9.8.5 is not true, a definitive

conclusion cannot be reached and further tests must be made.

If P and Q are specified in addition to a and e, conclusive results

A

can be obtained. First, the projection of S on the orbital plane must

be found. Let T be the transformation matrix defined T = ~ I .

A

Then the projection of S on the orbital plane is

s =T 9.8.6

and the true anomaly of s in the orbit is

B = tan-1 (s2/s1) 9.8.7

The position vector magnitude at 3 in the orbit is
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r = p/(l + e cos O ) 9.8.8

where p is the semi-latus rectum. Again consider the angle a which

is defined in equation 9.8.3 and the critical angle which is defined

sin a cr= R/r 9.8.9

If the relationship from equation 9.8.5 is true, no intersection can

possibly exist between the orbit and the shadow. If the relationship

is false, it is assumed that part of the orbit falls within the

cylindrical shadow.1

The eclipse time can be estimated in terms of the angles displayed

in Figure 9.8.2. This time can then be used to identify the set of

osculating orbital elements from which the quartic equation is to be

formulated.
shadow

R e orbit

Earth

Cross-Section
of Shadow

Figure 9.8.2. Shadow Geometry
1This test may be insufficient for highly elliptical orbits with the line
of apsides nearly aligned with S and aOar . If this situation occurs
and equation 9.8.5 is false, an intersection may not exist.
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The angles £AR, a, and ( cr are related by the equation

cos ( (cr) = cos (() cos (A ) 9.8.10

so that

-1
Aj = cos (cos acr/Cos ( ) 9.8.11

The transit angle through the shadow is simply 2j . From the

conservation of angular momentum equation

r2 h 9.8.12

Af - h (1 + e cos f)
At .p

Solving for At :

Af

At = (1 + e cos f)2 VP 9.8.13

where h and fl are the angular momentum and planetary mass respectively.

From equation 9.8.13, the shadow time may be estimated. That is,

3
2A BS 9.8.14

ts ( + e cosi ) 2 j
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Thus, the time of shadow entrance, t , relative to periapsis crossing

can be computed from the eccentric anomaly of s in the orbit and the

estimated shadow time. That is,

-1
E = 2 tan - I (tan B/2 1 - e 9.8.15
S1 + +e

so

t = E - e sin E - t /2. 9.8.16
q s s s

In order to predict the shadow entrance and exit times more

accurately, a quartic equation in the cosine of the entrance and exit

true anomalies may be solved. To minimize the errors due to assumption

4., the osculating orbital elements are selected at time tq. The

following vector relationship is obtained from Figure 9.8.1.

d + R r 9.8.16
m -e

Upon entrance to or exit from the shadow

A

S- d = d 9.8.17

or

S . (r - R ) = d 9.8.18
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since S is perpendicular to R . Therefore, the angle between the anti-
-e

sun vector and the radius vector to the SEP S/C at entrance or exit is

cos q = (r 2 - Re ) 1/2/r 9.8.19

7r 7r
The angle qj is taken to be in the interval > ) 2 

since this is the only domain where a shadow exists. At all times,

the angle I can be obtained from the equation

cos = (S.r)/r 9.8.20

but

r = T r cos f 9.8.21

r cos f

which illustrates the mapping of the radius vector to the S/C from the

orbital to the ecliptic coordinate system. Thus,

AA AA

cos(P = (r cos f) SOP + (r sin f) S*Q 9.8.22
r

If the dot products in equation 9.8.22 are defined as

A =  S'P and P = S Q

A A A

where the coordinates of S, P, and Q are taken at time t , there results

the simplified equation
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cos (i = Acos f + psin f 9.8.23

When the squares of equations 9.8.19 and 9.8.23 are equated and the

relation r = p / (1 + e cos f) is employed, the shadow function is

produced:

= (1 + e cos f) R 2 + p ( cos f + sin f)2 - 2 9.8.24

where 0= 0 is the condition for entrance or exit from the shadow.

Note that only those solutions of equation 9.8.24 obtained when

Acos f + Psin f > 0 9.8.25

are of any physical meaning. If equation 9.8.25 is written in the form

4 32
=A cos f + Al cos f + A2 cos f + A3 cos f + A5

where

A = (Re/p)4 e - 2(Re/p)2 (P2 _ 2 ) e 2 + (P2 + 2)2

A1 = 4 (Re/p) 4 e 3 - 4(Re/p)2 (p2 A2 ) e

A2 = 6 (Re/p)4 e 2 - 2(Re/p)2 (p2 _ 2 ) - 2 (Re/p)2 (1-p2)e2

+ 2(P2 2) (1 - 2)_ 4 2 A2 9.8.26
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A 3 = 4(Re/p)4 e - 4(Re/p)2 (1 - p2) e

A4 = (Re/p)4 - 2(Re/p)2 (1 - P2) + (1 - )2

then equation 9.8.24 is solvable in closed form by quadratic radicals.2

Rejection of spurious roots is accomplished by application of equations

9.8.24 and 9.8.25. Once the entrance and exit true anomalies are formed,

the eccentric anomalies may be computed as in equation 9.8.15. If Enter

and E . are the entrance and exit eccentric anomalies respectively, then

tenter = Enter e sin Enter

and

t E -e sin E.
exit = xit xit

and the total time in the shadow is then

t = t exit - t er 9.8.28

Whenever the SEP S/C leaves the shadow, it must initiate a warm-up

period before it can operate at full efficiency. For any given shadow

time, the engine-restart delay is obtained from the function

O, ts < C
D=

2
a + a1 ts + a2 t , ts > C 9.8.29

A closed-form solution to quartic equations may be found in Escobal's
Methods of Orbit Determination, "Appendix III, Pages 430-434.
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D is considered to be zero if the time in the shadow is less than C.

Figure 9.8.3 illustrates the warm-up delay model when ao = 9,

aI = .464, a2 = 0 and 
C = 3 (e.g., the default parameters in the

$TRAJ namelist).

20

0

0 50 100

Shadow Time (min)

Figure 9.8.3 Warm-Up Time


